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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

9. Differentiation of distributions and structure theorems

We saw in the previous section that the space of distributions is an extension of usual classes of
functions. A remarkable consequence of this fact is that all distributions admit all partial derivatives
of any order (suitably defined).

9.1. Definition, basic properties, first examples. We begin with some motivation. Suppose
that f is a regular function on a domain Ω in Rn, say, of class C1(Ω). Then its partial derivative

(in the usual sense) ∂f
∂xj

defines a distribution acting on ϕ ∈ D(Ω) by

〈T ∂f
∂xj

, ϕ〉 =

∫
Ω

∂f(x)

∂xj
ϕ(x)dx = −

∫
Ω
f(x)

∂ϕ(x)

∂xj
dx = −〈Tf ,

∂ϕ

∂xj
〉,

where the second equality follows via the integration by parts. But the last expression is defined
for an arbitrary distribution f ; so it is natural to take it as a definition of the derivative of a
distribution. For f ∈ D′(Ω) and a multi-index α = (α1, ..., αn) we set

〈Dαf, ϕ〉 := (−1)|α|〈f,Dαϕ〉,

where we used the usual notation

Dα =
∂|α|

∂xα1 ...∂xαn
, |α| = α1 + ...+ αn.

Derivatives in D′(Ω) are often called weak derivatives. It is easy to check (do it!) that weak
differentiation is a well-defined operation, that is, Dαf ∈ D′(Ω). We note some basic properties of
this operation:

(0) If f ∈ C1(Ω), then ∂
∂xj

Tf = T ∂f
∂xj

.

(1) The map Dα : D′(Ω) −→ D′(Ω) is linear and continuous. The linearity is obvious. In order
to prove the continuity, consider a sequence fj −→ 0 in D′(Ω) as j → ∞. Then for any
ϕ ∈ D(Ω),

〈Dαfj , ϕ〉 = (−1)|α|〈fj , Dαϕ〉 −→ 0, as j →∞.
Thus, if a sequence (fj) converges to f in D′(Ω), then all partial derivatives of fj converge
to the corresponding partial derivatives of f .

(2) Every distribution admits partial derivatives of all orders.
(3) For any multi-indices α and β we have

Dα+βf = Dα(Dβf) = Dβ(Dαf).

(4) The Leinbitz rule. If f ∈ D′(Ω) and a ∈ C∞(Ω) then

∂(af)

∂xk
= a

∂f

∂xk
+

∂a

∂xk
f
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Indeed, given ϕ ∈ D(Ω) we have

〈∂(af)

∂xk
, ϕ〉 = −〈af, ∂ϕ

∂xk
〉 = −〈f, a ∂ϕ

∂xk
〉 = −〈f, ∂(aϕ)

∂xk
− ∂a

∂xk
ϕ〉 =

−〈f, ∂(aϕ)

∂xk
〉+ 〈f, ∂a

∂xk
ϕ〉 = 〈 ∂f

∂xk
, aϕ〉+ 〈 ∂a

∂xk
f, ϕ〉

= 〈a ∂f
∂xk

, ϕ〉+ 〈 ∂a
∂xk

f, ϕ〉 = 〈(a ∂f
∂xk

+
∂a

∂xk
f), ϕ〉

We consider several elementary examples in dimension 1.

Example 9.1. Consider the so-called Heaviside function

θ(x) =

{
1, if x > 0,

0, if x ≤ 0.

Then,

〈θ′, φ〉 = −〈θ, φ′〉 = −
∫ ∞

0
φ′(x)dx = φ(0) = 〈δ, φ〉.

Thus, θ′ = δ. �

Example 9.2. More generally, let f be a function of class C1 on (−∞, x0] and of class C1 on
[x0,∞). Denote by [f ]x0 := f(x0 + 0)− f(x0 − 0) its “jump” at x0. Denote also by Tf ′ the regular
distribution defined by the usual derivative f ′ of f . We claim that

f ′ = Tf ′ + [f ]x0δ(x− x0),

where the derivative f ′ of f on the left is understood in the sense of distributions. For any ϕ ∈ D′(R)
we have

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫
f(x)ϕ′(x)dx = [f ]x0ϕ(x0) +

∫
f ′(x)ϕ(x)dx

= 〈[f ]x0δ(x− x0) + Tf ′ , ϕ〉.
�

Example 9.3. Let f(x) = ln |x|. Then for every φ ∈ D(R) we obtain

〈ln |x|′, ϕ〉 = −〈ln |x|, ϕ′〉 = −
∫
R

ln |x|ϕ′dx =

− lim
ε−→0+

(∫ −ε
−∞

ln |x|ϕ′(x)dx+

∫ +∞

ε
ln |x|ϕ′(x)dx

)
=

− lim
ε−→0+

(
ln εϕ(−ε)−

∫ −ε
−∞

ϕ(x)

x
dx− ln εϕ(ε)−

∫ ∞
ε

ϕ(x)

x
dx

)
=

− lim
ε−→0+

(
ln ε[ϕ(−ε)− ϕ(ε)]−

∫
|x|≥ε

ϕ(x)

x
dx

)
=

lim
ε−→0+

∫
|x|≥ε

ϕ(x)

x
dx = 〈P 1

x
, ϕ〉

Thus

ln |x|′ = P 1

x
.

�
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Example 9.4. We have

〈δ′, φ〉 = −〈δ, φ′〉 = −φ′(0).

�

9.2. Basic differential equations with distributions. We saw in the previous examples that
the usual point-wise derivative does not give a full information about the derivative in the sense of
distributions: the Dirac delta-function appears at the discontinuity points. The following important
statement shows that this does not happen for derivatives in the sense of distributions.

Theorem 9.1. Let f ∈ D′((a, b)) and f ′ = 0 in D′((a, b)). Then f is constant, i.e., there exists a
real constant c ∈ R such that f = Tc.

Proof. By hypothesis, for every ϕ ∈ D((a, b)) one has 〈f, ϕ′〉 = 0. Given a function ψ ∈ D((a, b))
its primitive

ϕ(x) =

∫ x

−∞
ψ(t)dt

is identically constant on the interval [A,∞) where A < b is the sup of the support of ψ. Hence,

ϕ is in D((a, b)) if and only if J(ψ) :=
∫ +∞
−∞ ψ(t)dt = 0. Now fix a function τ0 ∈ D((a, b)) such

that J(τ0) = 1 and given φ ∈ D((a, b)) set ψ = φ − J(φ)τ0. Then J(ψ) = 0 and so ψ = ϕ′ with
ϕ ∈ D((a, b)). Therefore 〈f, ψ〉 = 0 and 〈f, φ〉 = 〈f, τ0〉J(φ) = constJ(φ) for every φ ∈ D((a, b)),
which proves the theorem. �

Corollary 9.2. Let f ∈ D′((a, b)) and f ′ ∈ C((a, b)). Then f is a regular distribution and f ∈
C1((a, b)).

Proof. The continuous function f ′ admits a primitive f̃ of class C1((a, b)). Then (f − f̃)′ = 0 in
D′((a, b)) and Theorem 9.1 can be applied. �

We now extend these results to distributions in several variables.

Theorem 9.3. Let Ω′ be a domain in Rn−1 and I = (a, b) be an interval in R. Assume that a
distribution f ∈ D′(Ω′ × I) satisfies

∂f

∂xn
= 0

in D′(Ω′ × I). Then there exists a distribution f̃ ∈ D′(Ω′) such that for every ϕ ∈ D(Ω′ × I)

〈f, ϕ〉 =

∫
R
〈f̃(x′), ϕ(x′, xn)〉dxn,

where x′ = (x1, . . . , xn). In this sense the distribution f is independent of the variable xn.

Proof. Fix a function τ0 ∈ D(I) such that
∫
R τ0dt = 1. We lift every φ ∈ D(Ω′) to a function

φ̃ ∈ D(Ω′× I) by setting φ̃(x′, xn) = φ(x′)τ0(xn). This allows us to define a distribution f̃ ∈ D′(Ω′)
by setting 〈f̃ , φ〉 = 〈f, φ̃〉, φ ∈ D(Ω′).

Given ψ ∈ D(Ω′ × I) put

J(ψ)(x′) =

∫
R
ψ(x′, xn)dxn.

Similarly to the proof of Theorem 9.1 for every ψ ∈ D(Ω′× I) there exists a function ϕ ∈ D(Ω′× I)
such that

ψ(x)− J(ψ)(x′)τ0(xn) =
∂ϕ(x)

∂xn
.
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Then by the assumptions of the theorem, 〈f, ∂ϕ(x)
∂xn
〉 = 0, and by the definition of the distribution f̃

we have

〈f, ψ〉 = 〈f, J(ψ)(x′)τ0(xn)〉 = 〈f̃ , J(ψ)〉 = 〈f̃ ,
∫
R
ψ(x′, xn)dxn〉.

It remains to show that

〈f̃ ,
∫
R
ψ(x′, xn)dxn〉 =

∫
R
〈f̃(x′), ψ(x′, xn)〉dxn.

Fix ψ ∈ D(Ω′ × I) and consider the functions F1(xn) = 〈f̃(x′),
∫ xn
−∞ ψ(x′, t)dt〉 and F2(xn) =∫ xn

−∞〈f̃(x′), ψ(x′, t)〉dt. Then it follows by Theorem ?? that F ′1 = F ′2. Since limxn→−∞ Fj = 0, we
obtain F1 ≡ F2. This concludes the proof. �

Corollary 9.4. Let f ∈ D(Ω) satisfy ∂f
∂xj

= 0, j = 1, ..., n. Then f is constant.

Finally we establish a weak, but useful analogue of Corollary 9.2.

Theorem 9.5. Let f and g be continuous functions in a domain Ω ⊂ Rn. Suppose that

∂Tf
∂xn

= Tg.

Then the usual partial derivative ∂f
∂xn

exists at every point x ∈ Ω and is equal to g(x).

Proof. The statement in local so without loss of generality we assume that Ω = Ω′ × I in the
notation of Theorem 9.3. Fix a point c ∈ I and set

v(x) =

∫ xn

c
g(x′, t)dt

Then ∂(f−v)
∂xn

= 0 in D′(Ω′ × I) and Theorem 9.3 gives the existence of a distribution f̃ ∈ D′(Ω′)
such that f − v = f̃ . Furthermore, since f − v is continuous, it follows from the construction of f̃
in the proof of Theorem 9.3 that f̃ is a continuous function in x′ (defining a regular distribution).

Then the function f(x) = v(x) + f̃(x′) admits a partial derivative in xn which coincides with g.
This proves the theorem. �

9.3. Support of a distribution. Distributions with compact support. Let f ∈ D′(Ω′), and
Ω ⊂ Ω be a subdomain. By a restriction of f to Ω we mean a distribution f |Ω acting by

〈f |Ω, ϕ〉 := 〈f, ϕ|Ω〉, ϕ ∈ D(Ω) ⊂ D(Ω′).

We say that a distribution f ∈ D′(Rn) vanishes on an open subset U ⊂ Rn if 〈f, ϕ〉 = 0 for any
ϕ ∈ D(U), i.e., its restriction to U vanishes identically. We express this as f |U ≡ 0.

Definition 9.6. The support supp f of a distribution f ∈ D′(Rn) is the subset of Rn with the
following property: x ∈ supp f if and only if for every neighbourhood U of x there exists φ ∈ D(U),
supp φ ⊂ U such that 〈f, φ〉 6= 0, i.e., f does not vanish identically in any neighbourhood of x.

It follows from the definition of supp f that it is a closed subset of Rn, and so its complement
is an open (but not necessarily connected) subset of Rn. Indeed, the Rn\supp f is formed by all
points x such that f vanishes identically in some neighbourhood of x and so it is clearly open.

Proposition 9.7. Let X be an open subset of Rn such that f ∈ D′(Rn) vanished identically in a
neighbourhood of every point of X. Then f |X ≡ 0.
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Proof. Given point x ∈ X there exists a neighbourhood Uα such that f |Uα ≡ 0. Let φ ∈ D(X).
Consider a neighborhood U of supp φ such that the closure U is a compact subset of X. Let (ηγ)

be a partition of unity subordinated to a finite sub-covering (Uα) of U (see Section ??). Then
〈f, φ〉 =

∑
γ〈f, ηγφ〉 = 0 since every ηγφ ∈ D(Uα) for some α. �

Example 9.5. If f is a regular distribution defined by a function f ∈ C(Rn) then its support in
the sense of distributions coincides with the support in the usual sense since f vanishes on an open
set U as a distribution if and only if it vanishes as a usual function. �

Example 9.6. supp δ(x) = {0}. �

A remarkable property of distributions with a compact support in Rn is that one can extend them
as linear continuous functionals defined on the space C∞(Rn). Let f ∈ D′(Rn) have a compact
support supp f = K in Rn. Fix a function η ∈ C∞0 (Rn) such that η(x) = 1 in a neighbourhood of
K (Lemma ??). Then for every ψ ∈ C∞(Rn) the function ηψ is in D(Rn) and we set

(1) 〈f, ψ〉 := 〈f, ηψ〉,
since the right hand is defined. This definition is independent of the choice of η. Indeed, let
η′ ∈ C∞0 (Rn) be another function vanishing in a neighbourhood of K. Then η − η′ vanishes in a
neighbourhood of K and for any ψ ∈ C∞(Rn) the support of the function (η − η′)ψ ∈ D(Rn) is
contained in Rn\K. By Definition 9.6 we have

〈f, ηψ〉 − 〈f, η′ψ〉 = 〈f, (η − η′)ψ〉 = 0

Hence, (1) is independent of the choice of η. The defined above extension of f (still denoted by f)
is, of course, a linear continuous functional on C∞(Rn). Indeed, let a sequence ψk converge to ψ
in C∞(Rn), i.e., ψk converges to ψ together with all derivatives uniformly on every compact subset
of Rn. Then ηψk converges to ηψ in D(Rn) and

〈f, ψk〉 = 〈f, ηψk〉 −→ 〈f, ηψ〉 = 〈f, ψ〉.

Example 9.7. For every ψ ∈ C∞(Rn) we have

〈δ(x), ψ〉 = 〈δ(x), ηψ〉 = η(0)ψ(0) = ψ(0)

since η = 1 in a neighbourhood of supp δ(x) = {0}. �


