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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

10. Structure theorems and convolution of distributions

10.1. Structure theorems. We introduce the following property (?).

Definition 10.1. A linear functional f : D(Ω) → R satisfies condition (*) if for every compact
subset K in Ω there exists C = C(K) > 0 and a positive integer k = k(K) such that

|〈f, φ〉| ≤ C||φ||Ck(K), ∀φ ∈ D(Ω), supp φ ⊂ K.(1)

We have the following characterization of distributions.

Theorem 10.2. A linear functional f on the space D(Ω) is a distribution if and only if it satisfies
condition (?).

Proof. If f satisfies (?) then f is clearly continuous, and so f ∈ D′(Ω). To prove the converse,
assume that f ∈ D′(Ω). Arguing by contradiction, suppose that f does not satisfy (?). Then there
exists a compact K in Ω such that for every C and k the inequality (1) fails for some φ ∈ D(Ω) with
supp φ ⊂ K. In particular, we can set C = k = j and take a function φj ∈ D(Ω) with suppφ ⊂ K
such that

|〈f, φj〉| > j ‖ φj ‖Cj(K), j = 0, 1, 2, . . . .(2)

By linearity of expressions on both sides, this inequality still holds if we replace φj by the function

ψj =
φj
〈f,φj〉 . Then

1/j >‖ ψj ‖Cj(K), j = 0, 1, 2, . . . .

Fix a positive integer k. Then for j ≥ k we have

‖ ψj ‖Ck(K)≤‖ ψj ‖Cj(K)< j−1 → 0, as j →∞.

Therefore, the sequence (ψj) converges to 0 in D(Ω) but 〈f, ψj〉 = 1. This contradiction proves the
theorem. �

Let Ω be a domain in Rn, f ∈ D(Ω) and k ≥ 0 be an integer. We say that a distribution f
has the order of singularity ≤ k if there exists a constant C = C(Ω, f) > 0 such that for every
ϕ ∈ D(Ω) we have

|〈f, ϕ〉| ≤ C ‖ ϕ ‖Ck(Ω) .

Thus, f satisfies condition (1) with the same k for every compact K in Ω, i.e., k can be chosen
independently of K. We say that the order of singularity of f is equal to k if this estimate does
not hold for some k′ < k.

Example 10.1. If Tf is a regular distribution defined by a function f ∈ L1(Ω). Then its order of
singularity is 0. �

Example 10.2. The order of singularity of δ(k)(x) is equal to k. �

The following property of distributions is often used.
1
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Theorem 10.3. Let Ω′ be a domain in Rn and Ω be a bounded subdomain such that Ω ⊂ Ω′. Then
for every distribution f ∈ D′(Ω′) its restriction to Ω is a distribution of finite order of singularity.

Thus, the theorem claims that there exist an integer k ≥ 0 (depending on f and Ω) and a
constant C = C(Ω, f) > 0 such that for every ϕ ∈ D(Ω) we have

|〈f, ϕ〉| ≤ C ‖ ϕ ‖Ck(Ω)

The proof is similar to the previous one.

Proof. Arguing by contradiction, suppose that there exists sequence ϕm ∈ D(Ω) such that

|〈f, ϕm〉| ≥ m ‖ ϕm ‖Cm(Ω)

for every m = 1, 2, .... Set ψn = αnϕn, where αn is a real number. Then by linearity we still have

|〈f, ψm〉| ≥ m ‖ ψm ‖Cm(Ω) .

Fix αm = (‖ ϕm ‖Cm(Ω))
−1/m. Then

|〈f, ψm〉| ≥ m ‖ ψm ‖Cm(Ω)= 1.(3)

On the other hand, ‖ ψm ‖Cm(Ω)= 1/m for every m. Then for every β, such that |β| ≤ m, we have

‖ Dβψm ‖C(Ω)≤ 1/m.

Thus, the sequence (ψm) converges to 0 together with all partial derivatives of all orders and the
supports of ψm are contained in the compact Ω in Ω′. Then ψm −→ 0 in D(Ω′) and 〈f, ψm〉 −→ 0:
a contradiction to (3). �

The following consequence of Theorem 10.3 is frequently used.

Proposition 10.4. Let f ∈ D′(Rn) satisfy supp f = {0}. Then there exist an integer k ≥ 0 and
constants Cα such that

f =
∑
|α|≤k

CαD
αδ(x).

Proof. Let a function η ∈ D(Rn) be equal to 1 in a neighbourhood of 0 and vanishes outside
B(0, 1) = {|x| < 1}. Consider a function ϕ ∈ D(Rn). Let Ω be a domain in Rn containing
suppϕ ∪ B(0, 2). Applying Theorem 10.3 to f in Ω we conclude that there exist an integer k ≥ 0
(depending on Ω) and a constant C = C(Ω, f) > 0 such that for every φ ∈ D(Ω) we have

|〈f, φ〉| ≤ C ‖ φ ‖Ck(Ω) .(4)

Set h(x) = ϕ(x)−
∑
|α|≤k(D

αϕ(0)xα)/α! and

ψs(x) = h(x)η(sx)

Then for every integer s ≥ 1 we have

〈f(x), ψ1〉 = 〈f, ψs〉(5)

Indeed, 〈f, ψ1〉 − 〈f, ψs〉 = 〈f, (ψ1 − ψs)h〉 = 0 since (ψ1 − ψs)h = 0 in a neighborhood of 0 and
supp f = {0}. Since suppψs ⊂ Ω for every s ≥ 1, we obtain that ψs ∈ D(Ω) and by (4),

|〈f, ψs〉| ≤ C ‖ ψs ‖Ck(Ω), s ≥ 1.
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It follows easily from the definition of ψs that ‖ ψs ‖Ck(Ω)−→ 0 as s −→ ∞. But then (5) implies

that 〈f(x), ψ1〉 = 0. Therefore,

〈f, ϕη〉 =
∑
|α|≤k

(〈f, xαη〉/α!)Dαϕ(0) =
∑
|α|≤k

Cα〈Dαδ(x), ϕ〉,

where Cα = (〈f, xαη〉/α!) are independent of ϕ. �

Example 10.3. Let a function f ∈ L1
loc(Rn \ {0}) satisfy the following condition: there exists a

constant C > 0 and an integer m > 0 such that

|f(x)| ≤ C

|x|m
, ∀x ∈ {x ∈ Rn : |x| ≤ 1}.(6)

We will show that f admits an extension past the origin as a distribution, i.e., there exists f̃ ∈
D′(Rn) such that

〈f̃ , ϕ〉 =

∫
Rn

f(x)ϕ(x)dx

for every ϕ ∈ D(Rn) with suppϕ ⊂ Rn\{0}.
First of all let us recall the general Taylor formula: let a ∈ Rn and ψ ∈ C∞ in a neighborhood

of a. Then for every integer k ≥ 0 there exists a neighborhood U of a such that for x ∈ U we have

ψ(x) =
∑

0≤|α|≤k

1

α!
Dαψ(a)(x− a)α +

∫ 1

0
(1− t)k

∑
|α|=k+1

k + 1

α!
Dαψ(tx+ (1− t)a)(x− a)αdt

As usual we use here the notation α! = α1!...αn! and xα = xα1
1 ...xαn

n . Now set

〈f̃ , ϕ〉 = I1 + I2

where

I1 =

∫
|x|≥1

f(x)ϕ(x)dx,

I2 =

∫
|x|≤1

f(x)

ϕ(x)−
∑

|α|≤m−1

1

α!
Dαψ(0)xα

 dx.

Using the Taylor formula and condition (6) we obtain

|I2| ≤ C
∑
|α|=m

sup
R
|Dαϕ|

Using the condition suppϕ ⊂ {x : |x| ≤M} we also obtain

|I1| ≤
∫

1≤|x|≤M
|f(x)ϕ(x)|dx ≤ C ′ sup

Rn
|ϕ|.

From this and Theorem 10.2 we conclude that f̃ is a correctly defined distribution from D′(Rn). �
Finally, consider an example of a distribution of infinite order.

Example 10.4. Consider a linear functional on D(R) defined by

〈f, ϕ〉 =

∞∑
n=0

ϕ(n)(n).

It follows by Theorem ?? that f ∈ D′(R). We leave to the reader to prove that f is not of a finite
order, arguing by contradiction. �
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10.2. Regularization and convolution with test-functions. Recall that a convolution f ∗ g
of two functions L2(Rn) is defined by

f ∗ g(x) =

∫
Rn

f(y)g(x− y)dy =

∫
Rn

f(x− y)g(y)dy.(7)

This makes natural the following general definition.

Definition 10.5. A convolution of a distribution f ∈ D′(Rn) and a test function ϕ ∈ D(Rn) is
defined by

f ∗ ϕ(x) = 〈f(y), ϕ(x− y)〉.(8)

This definitions deserves some remarks. For every x ∈ Rn the function y 7→ ϕ(x − y) is a test-
function; on the right-hand side of (8) we apply distribution f to this function which is stressed by
the notation f(y). Thus, f ∗ ϕ is defined as a usual function on Rn.

Proposition 10.6. We have f ∗ φ ∈ C∞(Rn) and

Dα(f ∗ φ) = f ∗Dαφ = (Dαf) ∗ φ.(9)

Proof. The regularity of f ∗ ϕ and the first equality of (9) follow from Theorem ??. Let us prove
the second equality in (9). We have

(
∂

∂xj
f) ∗ ϕ(x) = 〈 ∂

∂yj
f(y), ϕ(x− y)〉 = −〈f(y),

∂

∂yj
(ϕ(x− y))〉

= 〈f(y),

(
∂

∂xj
ϕ

)
(x− y))〉 = f ∗ ∂

∂xj
ϕ

The rest of the proof is done by induction. �

A very important special case arises if we take the bump function ωε as ϕ in the definition of
convolution. This leads to

Definition 10.7. The convolution fε := f ∗ ωε is called the regularization of a distribution f .

Proposition 10.8. We have

(i) fε ∈ C∞(Rn).
(ii) (Dαf)ε = Dα(fε) .
(iii) If f ∈ C(Rn) then fε −→ f, ε −→ 0+ in C(Ω) for every bounded subset Ω of Rn.
(iv) If ϕ ∈ D(Rn) then ϕε ∈ D(Rn) and ϕε −→ ϕ in D(Rn) as ε −→ 0+.
(v) if f ∈ D′(Rn) then fε −→ f in D′(Rn) as ε −→ 0+.

Proof. Parts (i) and (ii) follow from Proposition 10.6. Part (iii) is established in Proposition ??,
so it remains to show (iv) and (v). If ϕ ∈ D(Rn), then its support is compact, say, ϕ(x) = 0 when
|x| ≥ A for some A > 0. Then (??) shows that ϕε(x) = 0 for |x| ≥ A + ε so suppϕε ⊂ K = {x ∈
Rn : |x| ≤ A + 1} for ε < 1. It follows now from (iii) and (ii) that ϕε converges to ϕ as ε −→ 0+
uniformly on K together with all partial derivatives of any order. Hence ϕε −→ ϕ, ε −→ 0+ in
D(Rn) and we obtain (iv).

To prove (v), we view fε = 〈f(y), ωε(x− y)〉 as a distribution acting on every ψ ∈ D(Rn) by

〈fε, ψ〉 =

∫
Rn

〈f(y), ωε(x− y)〉ψ(x)dx.

It follows from Theorem ?? that∫
Rn

〈f(y), ωε(x− y)〉ψ(x)dx = 〈f(y),

∫
Rn

ωε(x− y)ψ(x)dx〉 = 〈f, ψε〉.(10)
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Indeed, consider for simplicity of notations the case n = 1. Introduce the functions

F (t) =

∫ t

−∞
〈f(y), ωε(x− y)〉ψ(x)dx,

and

G(t) = 〈f(y),

∫ t

−∞
ωε(x− y)ψ(x)dx〉.

Then by Theorem ??, F ′(x) = G′(x) = 〈f(y), ωε(x − y)〉ψ(x). Since F (−∞) = G(−∞) = 0, we
have F = G for all t and we pass to the limit as t→ +∞. This proves (10). Then by (iv),

〈fε, ψ〉 = 〈f, ψε〉 −→ 〈f, ψ〉 as ε −→ 0 + .

This concludes the proof. �

As an application we give another proof of Corollary ??: if f ∈ D′(Rn) are such that ∂
∂xj

f = 0

in D′(Rn) for j = 1, ..., n, then f = const.

Proof of Corollary ??. For every ε > 0 we have 0 = ( ∂
∂xj

f)ε = ∂
∂xj

(fε). Since fε is a usual function

of class C∞, we conclude that fε = C(ε). Then,

〈f, ϕ〉 = lim
ε−→0+

〈fε, ϕ〉 = lim
ε−→0+

C(ε)

∫
ϕ(x)dx for any ϕ ∈ D(Rn).

In particular, set ϕ = ω(x) so that
∫
ω(x)dx = 1. We obtain that C = limε→0+C(ε) exists, and

f = C. �

10.3. Convolution of distributions. Let f and g be functions in L2(Rn). Their convolution f ∗g
can be defined by

f ∗ g(x) =

∫
Rn

f(y)g(x− y)dy

For a moment assume that f ∗ g is in L1
loc(Rn). Then it defines a regular distribution acting on

ϕ ∈ D(Rn) by

〈f ∗ g(x), ϕ(x)〉 =

∫
Rn

f ∗ g(x)ϕ(x)dx =

∫ (∫
f(y)g(x− y)dy

)
ϕ(x)dx.

By Fubini’s theorem,∫ (∫
f(y)g(x− y)dy

)
ϕ(x)dx =

∫
f(y)

(∫
g(x− y)ϕ(x)dx

)
dy

=

∫
f(y)

(∫
g(t)ϕ(t+ y)dt

)
dy =

∫
f(y)〈g(t), ϕ(t+ y)〉dy

= 〈f(y), 〈g(t), ϕ(t+ y)〉〉.
Thus,

〈f ∗ g(x), ϕ(x)〉 = 〈f(y), 〈g(t), ϕ(t+ y)〉〉, ϕ ∈ D(Rn).(11)

Therefore, in the general case of arbitrary distributions f, g ∈ D′(Rn) it is natural to take equality
(11) as a definition of the convolution f ∗ g. However, the right hand side of equality (11) is not
defined for arbitrary distributions f and g since the function y 7→ 〈g(t), ϕ(t + y)〉 is just of class
C∞(Rn) and in general need not have compact support. The support is clearly compact if the
distribution g has compact support. So in this case the convolution is well-defined. Similarly, if f
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has compact support then it acts on any function from C∞(Rn) (see previous subsection) so the
right hand of equality (11) is also defined. We summarize this in the following.

Proposition 10.9. The convolution f ∗ g of two distributions f, g ∈ D′(Rn) is a distribution
correctly defined by the equality (11) if at least one of the distributions f and g has compact support.

Example 10.5. For any distribution f ∈ D′(Rn) we have

〈f ∗ δ, ϕ〉 = 〈f(y), 〈δ(t), ϕ(t+ y)〉〉 = 〈f(y), ϕ(y)〉,
that is f ∗ δ = f . Furthermore

〈δ ∗ f, ϕ〉 = 〈δ(y), 〈f(t), ϕ(t+ y)〉〉 = 〈f(t), ϕ(t)〉,
so that δ ∗ f = f . We obtain the following fundamental identity

f ∗ δ = δ ∗ f = f

for any f ∈ D′(Rn). �

We conclude this section by some algebraic properties of convolution.
(1) The map (f, g) 7→ f ∗ g is bilinear. This is obvious.
(2) We have

Dα(f ∗ g) = f ∗Dαg = Dαf ∗ g.(12)

For the proof we consider ϕ ∈ D(Rn). Then

〈Dα(f ∗ g), ϕ〉 = (−1)|α|〈f ∗ g,Dαϕ〉 = 〈f(y), 〈g(t), (−1)|α|(Dαϕ)(t+ y)〉〉
= 〈f(y), 〈Dαg(t), ϕ(t+ y)〉〉 = 〈f ∗Dαg, ϕ〉

which proves the first equality of (12). For the second, we observe that 〈Dαg(t), ϕ(t + y)〉 =
(Dαg) ∗ ϕ(−y); hence it follows from (9) that

〈Dαg(t), ϕ(t+ y)〉 = (−1)|α|Dα〈g(t), ϕ(t+ y)〉.
Therefore,

〈f(y), 〈Dαg(t), ϕ(t+ y)〉〉 = (−1)|α|〈f(y), Dα〈g(t), ϕ(t+ y)〉〉
= 〈Dαf(y), 〈g(t), ϕ(t+ y)〉〉 = Dαf ∗ g

A simpler proof can be given using Theorem ??:

(−1)|α|〈f(y), 〈g(t), (Dαϕ)(t+ y)〉〉 = (−1)|α|〈f(y), Dα〈g(t), ϕ(t+ y)〉〉
= 〈Dαf(y), 〈g(t), ϕ(t+ y)〉〉


