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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

12. Fundamental solutions of classical operators.

12.1. More advanced examples. Here we consider examples concerning distributions in Rn,
n > 1. One of the most important examples is given by the Cauchy-Riemann operator ∂

∂z =
1
2

(
∂
∂x + i ∂∂y

)
on the complex plane C ∼= R2 with the coordinate z = x + iy. This is a differential

operator with constant coefficients of order one.
First of all we adapt the integration by parts formula (??) to the complex notation. Let Ω be a

bounded domain with C1 boundary in C and f be a complex function of class C(Ω). We suppose
that (a connected component of) ∂Ω is positively parametrized by the map [a, b] 3 t 7→ x(t) + iy(t)
of class C1. Then

~n =
(y′(t),−x′(t))√

(x′(t))2 + (y′(t))2

is the vector field of the unit ouward normal. Then, from the definition of the surface integral (??)
and using the notation dz = dx+ idy, we have∫

∂Ω
f [(~n,~e1) + i(~n,~e2)]dS =

∫ b

a
f(x(t), y(t))(y′(t)− ix′(t))dt = −i

∫
∂Ω
f(z)dz.

Keeping in mind this remark, we pass to the integration by parts with the Cauchy-Riemann oper-
ator. For two complex functions u, v ∈ C1(Ω) we have∫

Ω

∂u

∂z
vdxdy =

1

2

∫
Ω

∂u

∂x
vdxdy +

i

2

∫
Ω

∂u

∂y
vdxdy =

1

2

(∫
∂Ω
uv(~n, e1)dS −

∫
Ω
u
∂v

∂x
dxdy

)
+
i

2

(∫
∂Ω
uv(~n, e2)dS −

∫
Ω
u
∂v

∂y
dxdy

)
=

1

2

∫
∂Ω
uv[(~n, e1) + i(~n, e2)]dS −

∫
Ω
u
∂v

∂z
dxdy

=
−i
2

∫
∂Ω
uvdz −

∫
Ω
u
∂v

∂z
dxdy.

Thus we obtain the following useful integration by parts formula:∫
Ω

∂u

∂z
vdxdy =

−i
2

∫
∂Ω
uvdz −

∫
Ω
u
∂v

∂z
dxdy.(1)

Lemma 12.1. The function 1
πz is the fundamental solution of the operator ∂

∂z̄ , i.e.,

(2)
∂

∂z

1

z
= πδ(x, y).

Proof. First note that 1
z ∈ L1

loc(R2) (polar coordinates), and so 1
z defines a regular distribution.

Let ϕ ∈ D(R2) be a (complex-valued) test function with suppϕ ⊂ B(0, R). For ε > 0 denote by

A(ε,R) the annulus B(0, R)\B(0, ε). Denote also by Cε the circle {|z| = ε}. Then ∂
∂z

1
z = 0 on

A(ε,R) and using (1) with u = φ and v = 1/z we have

<
∂

∂z

1

z
, ϕ >= − < 1

z
,
∂ϕ

∂z
>= − lim

ε−→0+

∫
Ωε

1

z

∂ϕ

∂z
dxdy = lim

ε−→0+
− i

2

∫
Cε

ϕ

z
dz.

1



2 RASUL SHAFIKOV

Here the integral over the circle Cε is taken with positive orientation with respect to disc B(0, ε).
Writing ∫

Cε

ϕ

z
dz =

∫
Cε

ϕ(z)− ϕ(0)

z
dz + ϕ(0)

∫
Cε

dz

z
,

we easily see that the first integral tends to 0 (Taylor’s formula) and the second one tends to
2πiϕ(0). Hence

lim
ε−→0+

− i
2

∫
Cε

ϕ

z
dz = πϕ(0),

which concludes the proof. �

Using Lemma 12.1 we can easily deduce an integral representation involving the Cauchy-Riemann
operator. Fix z ∈ Ω. Denote by Ωε the domain Ω\B(z, ε) and by C(z, ε) the circle {ζ : |ζ−z| = ε}.
Let a complex function f be of class C1(Ω). We set ζ = ξ + iη. Then, using (1) and (2), we have

1

π

∫
Ω

∂f(ζ)

∂ζ

1

ζ − z
dξdη = lim

ε−→0+

∫
Ωε

∂f(ζ)

∂ζ

1

ζ − z
dξdη

=
1

π
lim

ε−→0+

(
−i
2

∫
∂Ω

f(ζ)

ζ − z
dζ +

i

2

∫
C(z,ε)

f(ζ)

ζ − z
dζ

)
=
−i
2π

∫
∂Ω

f(ζ)

ζ − z
dζ − f(z).

Thus we obtained the so-called Cauchy-Green formula

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ − 1

π

∫
Ω

∂f(ζ)

∂ζ

1

ζ − z
dξdη.(3)

In particular, if f is holomorphic, i.e., ∂f(ζ)

∂ζ
= 0 in Ω, we have the classical Cauchy integral

formula

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ.(4)

It is also easy to deduce now the Cauchy theorem. Let D be a domain in C and γ be a closed
simple path in D homotopic to 0. If f is a holomorphic function in D, then∫

γ
f(z)dz = 0.(5)

Indeed, consider the domain Ω ⊂ D bounded by γ. Since γ is homotopic to 0, the boundary ∂Ω of
Ω coincides with γ (with suitable orientation). Fix z ∈ Ω. By the Cauchy formula we have∫

γ
f(ζ)dζ =

∫
γ

(ζ − z)f(ζ)

ζ − z
dζ =

∫
γ

ζf(ζ)

ζ − z
dζ − z

∫
γ

f(ζ)

ζ − z
dζ

= 2πizf(z)− 2πizf(z) = 0,

which proves (5).
The next example is a generalization of Example ??.

Example 12.1. Let Ω be a bounded domain with C1 boundary and f ∈ C1(Ω) ∩ C1(Rn\Ω)

(in particular, all discontinuity points of f belong to ∂Ω). The usual partial derivative ∂f
∂xk

is

defined and locally integrable on Rn\∂Ω so we can consider the regular distribution T ∂f
∂xk

∈ D′(Rn).

Introduce also the ”jump” of f on ∂Ω:

[f ]∂Ω(x) = f+(x)− f−(x) = lim
Rn\Ω3x′−→x

f(x′)− lim
Ω3x′−→x

f(x′), x ∈ ∂Ω.
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We point out here that if µ is a continuous function on a compact hypersurface Γ ⊂ Rn, then
the distribution µδΓ defined by

〈µδΓ, ϕ〉 =

∫
Γ
µϕdS, ϕ ∈ D(Rn)

is called the simple potential on the hypersurface Γ with density µ.
For k = 1, 2, . . . , n, consider the distribution [f ]∂Ω(ek, ~n)δ∂Ω ∈ D′(Rn) defined by

〈[f ]∂Ω (ek, ~n) δ∂Ω, ϕ〉 =

∫
∂Ω

[f ]∂Ω (ek, ~n)ϕdS, ϕ ∈ D(Rn).

Let us prove the formula for the partial derivative of f in the sense of distributions:

∂f

∂xk
= T ∂f

∂xk

+ [f ]∂Ω(ek, ~n)δ∂Ω,(6)

where ∂f
∂xk
∈ D′(Rn). We have

〈 ∂f
∂xk

, ϕ〉 = −〈f, ∂ϕ
∂xk
〉 = −

∫
Rn
f(x)

∂ϕ(x)

∂xk
dx.

We decompose ∫
Rn
f(x)

∂ϕ(x)

∂xk
dx =

∫
Ω
f(x)

∂ϕ(x)

∂xk
dx+

∫
Rn\Ω

f(x)
∂ϕ(x)

∂xk
dx

and apply to every integral on the right the integration by parts formula (??). Then∫
Ω
f(x)

∂ϕ(x)

∂xk
dx = −

∫
Ω
ϕ(x)

∂f(x)

∂xk
dx+

∫
∂Ω
f−(x)ϕ(x)(ek, ~n)dS,

and ∫
Rn\Ω

f(x)
∂ϕ(x)

∂xk
dx = −

∫
Rn\Ω

ϕ(x)
∂f(x)

∂xk
dx−

∫
∂Ω
f+(x)ϕ(x)(ek, ~n)dS

(the minus before the last integral appears since ~n is the exterior normal for Ω and so is the interior
normal for Rn\Ω). Therefore,∫

Rn
f(x)

∂ϕ(x)

∂xk
dx = −

∫
Rn
ϕ(x)

∂f(x)

∂xk
dx−

∫
∂Ω

[f ]∂Ω(x)(ek, ~n)ϕ(x)dS,

and

〈 ∂f
∂xk

, ϕ〉 = −
∫
Rn
ϕ(x)

∂f(x)

∂xk
dx+

∫
∂Ω

[f ]∂Ω(x)(ek, ~n)ϕ(x)dS,

which proves (6). �

12.2. Laplace operator. In this section we construct a fundamental solution of the Laplace op-
erator

∆ =
∂2

∂x2
1

+ ...+
∂2

∂x2
n

.

(a) First we suppose that n = 2 and prove that

∆ ln |x| = ∂2 ln |x|
∂x2

1

+
∂2 ln |x|
∂x2

2

= 2πδ(x), x ∈ R2.(7)
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First of all we point out that the function ln |x| is of class L1
loc(R2) (for a verification it suffices to

pass to polar coordinates) and so can be viewed as a distribution. Let ϕ ∈ D(R2). Since the suppϕ
is a compact subset, there exists R > 0 such that ϕ(x) = 0 for |x| ≥ R/2. We have

〈∆ ln |x|, ϕ〉 = 〈ln |x|,∆ϕ〉 =

∫
R2

ln |x|∆ϕ(x) =

∫
|x|≤R

ln |x|∆ϕ(x)dx.

Denote by A(ε,R) = {x : ε < |x| < R} the annulus where ε > 0 is small enough. Then by the
Lebesgue convergence theorem,∫

|x|≤R
ln |x|∆ϕ(x)dx = lim

ε−→0+

∫
A(ε,R)

ln |x|∆ϕ(x)dx.

By the Green formula we have∫
A(ε,R)

ln |x|∆ϕ(x)dx =

∫
A(ε,R)

∆ ln |x|ϕ(x)dx+

∫
∂A(ε,R)

(
ln |x|∂ϕ(x)

∂~n
− ϕ∂ ln |x|

∂~n

)
dS

An elementary computation (say, in polar coordinates) shows that ∆ ln |x| = 0 for x 6= 0 so the
first integral on the right vanishes. Furthermore, ∂A(ε,R) = Cε ∪ CR, where Cr = {x : |x| = r} so

that
∫
∂A(ε,R) =

∫
Cε

+
∫
CR

. By the choice of R we have ϕ(x) = ϕ(x)
∂~n = 0 for x ∈ CR. Thus,∫

A(ε,R)
ln |x|∆ϕ(x)dx =

∫
Cε

(
ln |x|∂ϕ(x)

∂~n
− ϕ∂ ln |x|

∂~n

)
dS

Since ~n is the vector of unit exterior normal to A(ε,R), for every x ∈ Cε we have ~n = −x/|x| and

∂

∂~n
= − ∂

∂~x1

x1

|x|
− ∂

∂~x2

x2

|x|
.

Then, ∣∣∣∣∫
Cε

ln |x|∂ϕ(x)

∂~n
dS

∣∣∣∣ ≤ const · ε| ln ε| −→ 0, ε −→ 0.

Finally ∂ ln |x|
∂~n = − 1

|x| so that

−
∫
Cε

ϕ
∂ ln |x|
∂~n

dS =
1

ε

∫
Cε

ϕdS

But we have

lim
ε−→0

1

ε

∫
Cε

ϕ(x)dS =

(
lim
ε−→0

1

ε

∫
Cε

(ϕ(x)− ϕ(0))dS

)
+ 2πϕ(0) = 2πϕ(0).

Thus, ∫
R2

ln |x|∆ϕ(x)dx = 2πϕ(0),

which proves (7).
(b) Now we show that

∆
1

|x|n−2
= −(n− 2)Snδ(x), n ≥ 3,(8)
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where the constant Sn is equal to the surface area of the unit sphere in Rn. The proof is quite
similar to part (a). We use the notation r = r(x) = |x|. For a function f : R −→ R of class C2 we
have

∂

∂xj
f(r) = f ′(r)

xj
r
,

∂2

∂x2
j

f(r) = f ′′(r)
x2
j

r2
+ f ′(r)

r2 − x2
j

r2
,

∆f(r) = f ′′(r) + f ′(r)
n− 1

r
.

Setting f(r) = rp, we obtain
∆rp = p(p+ n− 2)rp−2

Therefore, ∆r2−n = 0 on Rn\{0}. Also note that the function x 7→ r2−n is in L1
loc(Rn).

We have

〈∆r2−n, ϕ〉 =< r2−n,∆ϕ〉 =

∫
Rn
r2−n∆ϕ(x) =

∫
|x|≤R

r2−n∆ϕ(x)dxdx,

and ∫
|x|≤R

r2−n∆ϕ(x)dx = lim
ε−→0+

∫
A(ε,R)

r2n∆ϕ(x)dx.

Again by the Green formula we have∫
A(ε,R)

r2−n∆ϕ(x)dx =

∫
A(ε,R)

∆r2−nϕ(x)dx+

∫
∂A(ε,R)

(
r2−n∂ϕ(x)

∂~n
− ϕ∂r

2−n

∂~n

)
dS.

The first integral on the right vanishes and by the choice of R we have ϕ(x) = ϕ(x)
∂~n = 0 for x ∈ CR.

Thus, ∫
A(ε,R)

r2−n∆ϕ(x)dx =

∫
Cε

(
r2−n∂ϕ(x)

∂~n
− ϕ∂r

2−n

∂~n

)
dS.

Since ~n is the vector of unit exterior normal to A(ε,R), for every x ∈ Cε we have ~n = −x/|x| and

∂

∂~n
= − ∂

∂~x1

x1

|x|
− ...− ∂

∂~xn

xn
|x|
.

Then, ∣∣∣∣∫
Cε

r2−n∂ϕ(x)

∂~n
dS

∣∣∣∣ ≤ const · ε −→ 0, ε→ 0.

Finally, ∂r2−n

∂~n = (n− 2)r1−n, so that

−
∫
Cε

ϕ
∂r2−n

∂~n
dS = −(n− 2)

1

εn−1

∫
Cε

ϕdS.

Then

−(n− 2) lim
ε−→0

1

εn−1

∫
Cε

ϕ(x)dS = −(n− 2)

(
lim
ε−→0

1

εn−1

∫
Cε

(ϕ(x)− ϕ(0))dS

)
−(n− 2)Snϕ(0) = −(n− 2)Snϕ(0),

which proves (8).
If n = 3, then S3 = 4π so that

∆
1

r
= −4πδ(x), x ∈ R3.
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12.3. Heat Equation. Consider the function

E(x, t) =
θ(t)

(2a
√
πt)n

e−
|x|2

4a2t ,

where the function θ is the Heaviside function on R. The function E is locally integrable in Rn+1.
Indeed, E(x, t) = 0 if t < 0 and E(x, t) is positive for t ≥ 0. Furhermore, E is continuous
(and vanishes) on the hyperplane {(x, t) : t = 0}. Consider a bouded set of Rn+1 of the form
B(0, R)× [0, R], where B(0, R) = {x ∈ Rn : |x| ≤ R}. By Fubini’s theorem we have∫

B(0,R)×[0,R]
E(x, t)dxdt =

∫
[0,R]

(∫
B(0,R)

E(x, t)dx

)
dt ≤

∫
[0,R]

(∫
Rn
E(x, t)dx

)
dt.

After the change of coordinates x/2a
√
t = y we have∫

Rn
E(x, t)dx =

∫
Rn

1

(2a
√
πt)n

e−
|x|2

4a2tdx =
1

(
√
π)n

n∏
j=1

∫
R
e−y

2
j dyj = 1

Thus ∫
Rn
E(x, t)dx = 1(9)

Then ∫
[0,R]

(∫
Rn
E(x, t)dx

)
dt ≤

∫
[0,R]

dt = R

This proves the local integrability of E(x, t).
Let us prove the following identity:

∂E

∂t
− a2∆E = δ(x, t).(10)

First of all we point out that for t > 0 the function E is of class C∞; an elementary computation
(we leave it to the reader) shows that

∂E

∂t
(x, t)− a2∆E = 0, t > 0,(11)

where the derivatives are taken, of course, in the usual sense. Now let ϕ ∈ D(Rn+1). Then

〈∂E
∂t
− a2∆E,ϕ〉 = −〈E, ∂ϕ

∂t
+ a2∆ϕ〉 = −

∫ ∞
0

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt.

By the Lebesgue convergence theorem we have

−
∫ ∞

0

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt = − lim

ε−→0

∫ ∞
ε

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt.

Since supp φ is compact, the integration by parts gives

−
∫ ∞
ε

(∫
Rn
E(x, t)

∂ϕ

∂t
dx

)
dt =

∫
Rn
E(x, ε)ϕ(x, ε)dx+

∫ ∞
ε

(∫
Rn

∂E

∂t
ϕdx

)
dt.

Fix R > 0 such that ϕ(x, t) = 0 for |x| ≥ R/2. Green’s formula implies∫
Rn
E(x, t)∆ϕ(x, t)dx =

∫
|x|≤R

E(x, t)∆ϕ(x, t)dx =

∫
Rn

(∆E(x, t))ϕ(x, t)dx,
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since ∫
|x|=R

(
E
∂ϕ

∂~n
− ϕ∂E

∂~n

)
dx = 0

in view of the choice of R. Thus,

− lim
ε−→0

∫ ∞
ε

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt = lim

ε−→0

(∫
E(x, ε)ϕ(x, ε)dx

+

∫ ∞
ε

(∫
Rn

(
∂E

∂t
− a2∆E)ϕdx

)
dt

)
= lim

ε−→0

(∫
E(x, ε)ϕ(x, ε)dx

)
where the last equality follows by (11). We need the following

Claim 1. One has

lim
ε−→0

∫
E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx −→ 0.

For the proof, fix R > 0 such that supp φ ⊂ {|(x, t)| < R}. The function φ is Lipschitz continuous
and hence, uniformly continuous on Rn+1. Given α > 0 there exists δ > 0 such that |φ(x, ε) −
φ(x, 0)| < α/2 for all x ∈ Rn. One has∫

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx = I + II,

with

I =

∫
|x|<δ

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx,

and

II =

∫
δ≤|x|≤R

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx.

Then

|I| ≤ (α/2)

∫
Rn
E(x, ε)dx = α/2.

Set

M(ε) =
1

(2a
√
πε)n

e−
|δ|2

4a2ε ,

and C = supx∈Rn |φ(x)|. Then sup|x|≥δ E(x, ε) = M(ε) and

|II| ≤ 2C

∫
δ≤|x|≤R

E(x, ε)dx ≤ 4CM(ε)R→ 0, ε→ 0.

Hence, |II| ≤ α/2 for all ε small enough. This proves the claim.

Thus

lim
ε−→0

(

∫
E(x, ε)ϕ(x, ε)dx = lim

ε−→0
(

∫
E(x, ε)ϕ(x, 0)dx.

In order to conclude the proof, we establish the following

Claim 2. The following holds in D′(Rn):

lim
t−→0+

E(x, t) = δ(x).

For the proof, let ψ ∈ D(Rn). Since ψ has a compact support, there exists a constant C > 0
such that

|ψ(x)− ψ(0)| ≤ C|x|, x ∈ Rn
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We have ∣∣∣∣∫
Rn
E(x, t)(ψ(x)− ψ(0))dx

∣∣∣∣ ≤ C

(4πa2t)n/2

∫
Rn
e−
|x|2

4a2t |x|dx.

Evaluating the last integral in spherical coordinates (we denote by σn the surface of the unit sphere
in Rn) we obtain that the last integral is equal to

Cσn

(4πa2t)n/2

∫ ∞
0

e−
r2

4a2t rndr =
2Cσn

√
ta

πn/2

∫ ∞
0

e−u
2
undu = C ′

√
t

Hence

|
∫
Rn
E(x, t)(ψ(x)− ψ(0))dx| −→ 0, t −→ 0+

Then using (9) we have

〈E(x, t), ψ >=

∫
Rn
E(x, t)ψ(x)dx = ψ(0)

∫
E(x, t)dx+

∫
E(x, t)(ψ(x)− ψ(0))dx

−→ ψ(0) = 〈δ(x), ψ〉.
This proves the claim.

Let ψ(x) = ϕ(x, 0) ∈ D(Rn). Then

〈∂E
∂t
− a2∆E,ϕ〉 = lim

ε−→0

(∫
E(x, ε)ϕ(x, 0)dx

)
= ϕ(0) = 〈δ(x, t), ϕ〉.

This concludes the proof of (10).


