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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

12. FUNDAMENTAL SOLUTIONS OF CLASSICAL OPERATORS.

12.1. More advanced examples. Here we consider examples concerning distributions in R",

n > 1. One of the most important examples is given by the Cauchy-Riemann operator % =

% (% + z%) on the complex plane C = R? with the coordinate z =  + 4y. This is a differential

operator with constant coefficients of order one.

First of all we adapt the integration by parts formula (?7?) to the complex notation. Let € be a
bounded domain with C* boundary in C and f be a complex function of class C(Q). We suppose
that (a connected component of) 9§ is positively parametrized by the map [a,b] > t — z(t) +iy(¢)
of class C'. Then

Ly, -2

n
V@ (0)? + ((1)?

is the vector field of the unit ouward normal. Then, from the definition of the surface integral (?7)

and using the notation dz = dx + idy, we have

[ f107.63) + i ))ds = /f (t)—im’(t))dt:—i/mf(z)dz

Keeping in mlnd this remark, we pass to the integration by parts with the Cauchy-Riemann oper-
ator. For two complex functions u,v € C 1(Q) we have

vd:cdy = / —uvdxdy + 8uvdmdy _! (/ uv(ii, e1)dS — / dmdy)
Q 0y 2 \Usa
_,_3 </ uv (7, e2)dS — / dxdy) 1/ wo[(71, e1) + i(7i, e2)]dS — / dxdy
2 \Joo 2 Jon

= _—Z uvdz — / d:z:dy
onN

Thus we obtain the following useful integration by parts formula:

o .

(1) 7vd:cdy S— uvdz — / d:cdy

Lemma 12.1. The function é is the fundamental solution of the operator %, i.e.,
01

2 —— =70 .

) 2 = (ay)

Proof. First note that 1 € L} (R?) (polar coordinates), and so 1 defines a regular distribution.
Let ¢ € D(R?) be a (complex-valued) test function with suppp C B(0, R). For € > 0 denote by
A(e, R) the annulus B(0, R)\B(0,¢). Denote also by C. the circle {|z| = €}. Then 7, =0 on
A(e, R) and using (1) with u = ¢ and v = 1/z we have

01 10 10 '
<= >=—< o, % 5=~ lim / Sz)clgvdy = lim _l/ L
Zz Q. 2 0% 2

z 0z e—0+
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Here the integral over the circle C; is taken with positive orientation with respect to disc B(0, ¢).

Writing
/ Pz :/ #(2) = ¢(0) ‘p(o)dzﬂo(O) .
c. % c.

z C. z
we easily see that the first integral tends to 0 (Taylor’s formula) and the second one tends to
27mip(0). Hence

which concludes the proof. O

Using Lemma 12.1 we can easily deduce an integral representation involving the Cauchy-Riemann
operator. Fix z € Q2. Denote by Q. the domain Q\B(z,¢) and by C(2,¢) the circle {¢ : [( —z| = €}.
Let a complex function f be of class C*(Q2). We set ¢ = & + in. Then, using (1) and (2), we have

L0 L ey, gy [0 1
w./; gc ¢z el5%+-/(e a -

(i RO, QN i RO,
N ;EE%Jr (2 /BQ ¢ — de+ 2/0(255) ¢ — zd<> 2 /39 ¢ — zdc /().

Thus we obtained the so-called Cauchy-Green formula

Q 10 =5 [ Hac— 1 [O1E L aeq

21 Joq C— 2 T ¢ ¢—
In particular, if f is holomorphic, i.e., %%) = 0 in €2, we have the classical Cauchy integral
formula
1 f(¢
() fo)= o [ T

21 o0 C —Z
It is also easy to deduce now the Cauchy theorem. Let D be a domain in C and v be a closed
simple path in D homotopic to 0. If f is a holomorphic function in D, then

(5) qumz:

Indeed, consider the domain €2 C D bounded by 7. Since « is homotopic to 0, the boundary 92 of
Q) coincides with ~ (with suitable orlentatlon) Fix z € . By the Cauchy formula we have

f%/ -—d&#@
/ C — v C—2 v (=2
=2mizf(z) — 2mizf(z )
which proves (5).
The next example is a generalization of Example 77.
Example 12.1. Let Q be a bounded domain with C! boundary and f € C'(Q) N CY(R™\Q)
(in particular, all discontinuity points of f belong to 9€2). The usual partial derivative % is

defined and locally integrable on R™\ 92 so we can consider the regular distribution T sy € D'(R™).
e

Introduce also the ”jump” of f on 0:
[floa(@) = fr(z) = f-(z) = lim  f(@)— lim f(2), z €00

R"L\QBIE,—)(E Q52—
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We point out here that if p is a continuous function on a compact hypersurface I' C R™, then
the distribution udr defined by

<u5r,so>—/ru90d5, ¢ € D(R")

is called the simple potential on the hypersurface I' with density .
For k =1,2,...,n, consider the distribution [f]sq(ex,7)dagn € D'(R™) defined by

([flon (ex ) o, ) = /8 [flon (ex. ) S, ¢ € D(EY).

Let us prove the formula for the partial derivative of f in the sense of distributions:

(© L =Ty + Foner. o,
where af € D'(R™). We have
of | _ Op dp(x)
<aTsk"">— (f, ax> —/nf(x) o~ dz.
We decompose
dp(x)
[ 10200 [ 1% a4 | R

and apply to every integral on the right the integration by parts formula (??). Then

[ @228 a0 =~ [ o2 o+ [ 1 @)pta)er. s,
Q Q o0

Oxy, Oxy

and

() 0f(z) ;. _
/Rn\ﬂ f(z) Dy dx = — /Rn\gcp( r)———= 89% - f+(@)p(z) (e, )dS

(the minus before the last integral appears since 7i is the exterior normal for € and so is the interior
normal for R™\2). Therefore,

[ 1@ = - [ o) T e [ (flone) e mpta)ds,

and

(st == [ o5zt [ [flan(o)(en Meta)as.

oxp, Oz,
which proves (6). ¢

12.2. Laplace operator. In this section we construct a fundamental solution of the Laplace op-
erator

0* 9?
A= .
da? Tt o ox2

(a) First we suppose that n = 2 and prove that

0%1In|z| N 0% 1n|z|
Ox? Ox3

(7) Aln|z| = =276(z), = € R
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First of all we point out that the function In |z| is of class L}, (R?) (for a verification it suffices to
pass to polar coordinates) and so can be viewed as a distribution. Let ¢ € D(R?). Since the supp ¢
is a compact subset, there exists R > 0 such that ¢(z) = 0 for |z| > R/2. We have

(Alnal, ) = (n o], Ag) = / In 2] Ap(x) = / In 2] Ap()da.
R2 lz|<R

Denote by A(e,R) = {z : € < |z| < R} the annulus where ¢ > 0 is small enough. Then by the
Lebesgue convergence theorem,

/ In |z|Ap(x)dz = lim In |z|Ap(z)dz.
je|<R =0 JAR)

By the Green formula we have

1
/ In|z|Ap(z)dx = / Aln |z|p(z)dx +/ <1nx|8ﬁp(ﬁx> B 908 nl:c|> S
AleR) A(e,R) OA(,R) on on

An elementary computation (say, in polar coordinates) shows that Aln|z| = 0 for  # 0 so the
first integral on the right vanishes. Furthermore, 0A(e, R) = C. U Cr, where C, = {x : |z| =7} so

that faA(s,R) = Jo. + Jc,,- By the choice of R we have p(z) = ‘pa(g) =0 for x € Cg. Thus,

Op(x) Oln |z|
lnxAtp:rdx—/ <1nx — — dS
[ et = [ (mp 750 - o7

Since 7 is the vector of unit exterior normal to A(e, R), for every = € C. we have i = —z/|z| and

0 . 0 I 0 xTo

on  OFy|x| 0% x|
Then,

0
/ In|z| Qp(j;)dS‘ < const-¢|lne| — 0, ¢ — 0.
C. on

Finally 8lgflx| = —ﬁ so that

Oln |z 1
- s = - d
/ngo on S 5/6(p8

lim E p(x)dS = ( lim 1/0 (p(x) — tp(O))dS) +27p(0) = 2mp(0).

e—0 ¢ C- e—0 ¢

But we have

Thus,
/ In |z|Ap(z)dr = 271p(0),
R2

which proves (7).
(b) Now we show that

(8) =—(n—-2)5,0(z), n>3,

]
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where the constant 5, is equal to the surface area of the unit sphere in R™. The proof is quite
similar to part (a). We use the notation r = r(x) = |x|. For a function f : R — R of class C? we

have 5
PN
50 =102,
H2 2 2 _ .2
o F ) = 10 S+ P,

Setting f(r) = rP, we obtain
ArP = p(p+n — 2)rP~2
Therefore, Ar?~" = 0 on R™\{0}. Also note that the function z + r>~" is in L}

loc(Rn) :
We have

@) =<t Ay = [ P Aple) = [t A()dsds,
n lz|<R

and

/ 2" Ap(z)dr = lim 2 Ap(x)dz.
[e|<R =0 AR

Again by the Green formula we have

2—n
/ P Ap(z)dr = / Ar?p(z)dz + / <r2" ag(fc) - wagq ) ds.
A(e,R) A(e,R) DA(e,R) n n

The first integral on the right vanishes and by the choice of R we have p(x) = 908(2) =0 for z € Cj.

Thus,
0 or?—n
/ P Ap(z)dr = / (rz_” @&x) - 4 — ) ds.
A(E,R) - 877, 6n
Since 7 is the vector of unit exterior normal to A(e, R), for every x € C. we have 7 = —z/|z| and
o __0m _9am
on 0y |z| T 0%, x|
Then,
/ TQ_”a(g(jv)dS‘ <const-e — 0, € —0.
7

Finally, 87’;% = (n —2)r17", so that

or—m 1
- - (n—2)—— :
. g dsS (n )gn_ /Cs odS

Then

~(n=2) Jim s [ olw)is = ~(n=2) (Jim, 5 [ (o) = ol0)as)

—(n=2)8np(0) = —(n = 2) S (0),

which proves (8).
If n = 3, then S35 = 47 so that

A1 = —47d(z), x € R3.
r
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12.3. Heat Equation. Consider the function
o(t)  _l=

4a2t

= 7(%\/%)”6 ,

where the function @ is the Heaviside function on R. The function E is locally integrable in R™*!,
Indeed, E(x,t) = 0 if t < 0 and E(x,t) is positive for ¢ > 0. Furhermore, F is continuous
(and vanishes) on the hyperplane {(z,t) : t = 0}. Consider a bouded set of R"*! of the form
B(0, R) x [0, R], where B(0, R) = {z € R" : |z| < R}. By Fubini’s theorem we have

/ E(z,t)dzdt = / (/ E(x,t)da:) dt < / (/ E(x,t)dw) dt.
B(0,R) x[0,R] 0,r] \/B(0,R) [0,r] \JRr"

After the change of coordinates /2av/t = y we have

1 o2 1 £ 2
E(x,t dwz/ ———— ¢ tZidr = /eyﬂ'dy-:l
e S NI e WA

E(x,t)

Thus

9) E(z,t)dr =1
R”

/ ( E(m,t)dw) dt < / dt =R
[0,R] \JR» 0,R]

This proves the local integrability of E(x,t).
Let us prove the following identity:

oE
1 — —a"AE = .
(10) - — @*AF = 6(z,1)

First of all we point out that for ¢ > 0 the function FE is of class C'*°; an elementary computation
(we leave it to the reader) shows that

Then

OFE
(11) E(x,t) — GQAE = 0, t> O,
where the derivatives are taken, of course, in the usual sense. Now let ¢ € D(R®!). Then
2 2 ¢ 2 /OO ¢ 2
— —a“AE,¢) = —(E, — Ap) = — E(z,t) | = Ay | dx | dt.
(Gr ~@AB¢) = (B v ang) = — | (| B0 (G +ane) de

By the Lebesgue convergence theorem we have

—/ < E(x,t) <890 + a2Ag0> dx> dt = — lim < E(x,t) (880 + aQAng) dx) dt.
0 Rn ot e—0 J,. Rn ot

Since supp ¢ is compact, the integration by parts gives

—/ ( E(x,t)&pdx> dt = E(x,s)cp(:c,s)dx—i—/ < 6E<pd:r) dt.

Fix R > 0 such that ¢(x,t) =0 for |z| > R/2. Green’s formula implies

E(w,t)AgD(:r,t)dx:/ E(:c,t)Ago(x,t)dw:/ (AE(z,t))p(x, t)dx,

R® lz|<R n
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Op oF
EF—=—p—|dr=0
/|xR < i S"aﬁ> o
in view of the choice of R. Thus,

— lim ( E(x,t) <68f + a2A<p> da:) dt = lim (/ E(x,e)p(x,e)dx
R

e—0 J, e—0

N /:o </n(aaf _ aQAE)cpdx> dt> = Jim, (/ E(z,s)w(m,e)dm)

where the last equality follows by (11). We need the following
Claim 1. One has

since

lim [ E(x,e)[p(x,e) — p(x,0)]dez — 0.

e—0

For the proof, fix R > 0 such that supp ¢ C {|(z,t)| < R}. The function ¢ is Lipschitz continuous
and hence, uniformly continuous on R"™!. Given a > 0 there exists § > 0 such that |¢(z,e) —
¢(z,0)| < a/2 for all z € R". One has

/E(w,s)[gp(w,s) —¢(x,0)]de =T+ 11,

with
I= / E(z,e)[p(x,e) — p(x,0)]dx,
|x| <6
and
= [ B - pla0)do
6<|al<R
Then
11| < (a/2) E(z,e)dx = a/2.
R
Set
M) = e i
&= (2a+/me)" ’
and C = sup,cgn |¢(x)|. Then supj, 5 E(z,e) = M(e) and
11| <2C E(z,e)de <4CM(e)R -0, ¢ — 0.
d<lz|<R

Hence, |I1| < /2 for all € small enough. This proves the claim.
Thus

lim (/ E(z,e)p(z,e)dr = 6li_lf)no(/E(:L‘,a)cp(ac,O)dav.

e—0
In order to conclude the proof, we establish the following

Claim 2. The following holds in D'(R™):
lim E(x,t) =d(x).

t—0+

For the proof, let ¢ € D(R™). Since ¥ has a compact support, there exists a constant C' > 0
such that
() — $(0)] < Clal,z € R”
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We have o o2
/n E(x,t)(¥(x) —¥(0))dz| < W/ e a2t |z|dx.

Evaluating the last integral in spherical coordinates (we denote by o,, the surface of the unit sphere
in R™) we obtain that the last integral is equal to

n x© 2 200,V *
Co n/2/ M e undy = O’V

— e 1aZir"dr =
(4ma?t) 0 a/2 fy

Hence

| [ E(z,t)(¢(x) —(0))dz| — 0,8 — 0+
Rn
Then using (9) we have

(B, 8), 0 >— /Ea:t /Emtder/ (2, ) (Wh() — $(0))da
— (0) = (d(z), ¥).

This proves the claim.
Let ¢(x) = ¢(z,0) € D(R™). Then
<% —a®AE, ) = hm </E x,e)p(z, O)daz) = ¢(0) = (6(x, 1), ).

This concludes the proof of (10).



