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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

8. Basic theory of distributions

8.1. Definition and examples of distributions.

Definition 8.1. A linear continuous functional f on the space D(Ω) is called a distribution. The
linear space of all distributions is denoted by D′(Ω)

The continuity here means the following: for every sequence (ϕj) of test-functions converging to
ϕ in D(Ω) we have limj→∞ f(ϕj) = f(ϕ). By the linearity of f this is equivalent to the continuity
at the zero vector: f is continuous if and only if limj→∞ f(ϕj) = 0 for every sequence ϕj −→ 0 in
D(Ω). Following the tradition, we will use the notation f(ϕ) = 〈f, ϕ〉 which has certain advantages.
Consider some examples.

Example 8.1. Denote by L1
loc(Ω) the space of locally Lebesgue-integrable functions on Ω; a mea-

surable function f is in L1
loc(Ω) if and only if

∫
X |f(x)|dx <∞ for every compact measurable subset

X ⊂ Ω. Then f defines a distribution Tf ∈ D′(Ω) acting on every test-function ϕ ∈ D(Ω) by

〈Tf , ϕ〉 =

∫
Ω
f(x)ϕ(x)dx.(1)

This is a linear functional on D(Ω) by the linearity of the integral. The continuity of Tf follows
from the definition of the topology on D(Ω) and the Lebesgue Dominated Convergence Theorem.
�

Thus, we obtain a linear map
L : L1

loc(Ω) −→ D′(Ω)

L : f 7→ Tf

By linearity the injectivity of L is equivalent to the fact that L−1(0) = {0}. The latter is a
consequence of the following classical statement.

Proposition 8.2. Tf = 0 in D′(Ω) if and only if f ∈ L1
loc(Ω) vanishes almost everywhere in Ω.

Proof. We will just show that if Tf = 0 in D′(Ω) then f vanishes almost everywhere in Ω; the
converse is obvious. Let p be an arbitrary point of Ω; fix an r > 0 such that the closed ball
B(p, r) is contained in Ω. Let η be a function of class C∞(Rn) such that η = 1 on B(p, r/2) and
supp η ⊂ B(p, r). Then ηf ∈ L1(Rn) and Tηf vanishes in D′(Rn). On the other hand for every ε and
every x the function y 7→ η(y)ωε(x− y) is in D(Rn) so (ηf)ε(x) =

∫
Rn f(y)η(y)ωε(x− y)dy = 0 for

every x ∈ Rn. By (iii) of Proposition ?? ‖ ηf − (ηf)ε ‖L1−→ 0, ε −→ 0. Hence ηf represents 0 in
L1(Rn) and so vanishes almost everywhere. Therefore, f vanishes almost everywhere on B(p, r/2).
Since p is arbitrary point, the general statement follows. �

Thus, every ”usual” function f of class L1
loc(Ω) can be identified with a distribution Tf . In what

follows we often drop the T and write 〈f, ϕ〉 instead of 〈Tf , ϕ〉 viewing usual functions as distri-
butions. Such distributions (defined by (1)) are called regular. However, the class of distributions
is much larger so the space of distributions D′(Ω) is a far reaching generalization of the notion of

1



2 RASUL SHAFIKOV

a usual function. Distributions which are not regular, are called singular. The following example
confirms their existence.

Example 8.2. Consider the distribution δ(x) ∈ D′(Rn) (the famous Dirac delta function) defined
by

〈δ(x), ϕ〉 = ϕ(0)

for ϕ ∈ D(Rn). Suppose that there exists a function f ∈ L1
loc(Ω) such that δ = Tf . For every ε > 0

consider the function ψε ∈ D(Ω) defined by ψε(x) = e
−ε2

ε2−|x|2 for |x| < ε and ψε(x) = 0 for |x| ≥ ε.
Then 〈δ, ψε〉 = ψε(0) = e−1. On the other hand

〈Tf , ψε〉 =

∫
f(x)ψε(x)dx

and by the Lebesgue convergence theorem the last integral tends to 0 as ε tends to 0: a contradiction.
Thus, the δ-function is a singular distribution. Similarly, for every a ∈ Rn one can define the
translated delta function δa:

〈δa, ϕ〉 = ϕ(a).

�
Example 8.3. Another interesting and typical example of a singular distribution is given as fol-
lowing:

〈P 1

x
, φ〉 = v.p.

∫
R

φ(x)

x
dx := lim

ε−→0+

(∫ −ε
−∞

φ(x)

x
dx+

∫ +∞

ε

φ(x)

x
dx

)
(v.p. stands for valeur principale in the sense of Cauchy of the integral). Let us show that this
linear functional is continuous on D(R). Consider a sequence (φj) converging to 0 in D(R). In
particular, there exists A > 0 s.t. φj(x) = 0 for every j and every |x| ≥ A. Then, applying the
Mean Value Theorem to φj on the interval [0, x], we have∣∣∣∣〈P 1

x
, φj〉

∣∣∣∣ =

∣∣∣∣v.p.∫
R

φj(x)

x
dx

∣∣∣∣ =

∣∣∣∣v.p.∫ A

−A

φj(0) + xφ′j(ξ(x))

x
dx

∣∣∣∣
≤
∫ A

−A
|φ′j(ξ(x))|dx ≤ 2A sup

[−A,A]
|φ′j | −→ 0, j −→ 0

8.2. Convergence of distributions. Now we define a topology on the space of distributions. For
applications it is sufficient to use the standard notion of weak∗ convergence.

Definition 8.3. A sequence of distributions (fj) converges to a distribution f in D′(Ω) if for every
ϕ ∈ D(Ω) one has limj−→∞〈fj , ϕ〉 = 〈f, ϕ〉.

The following simple example of convergence is very important.

Proposition 8.4. ωε −→ δ in D′(Rn) as ε −→ 0+.

Proof. Given φ ∈ D(Rn) we need to show that

lim
ε−→0+

∫
ωε(x)φ(x)dx = φ(0).

For every τ > 0 there exists an ε0 > 0 such that |φ(x) − φ(0)| < τ when |x| < ε0. Using the
properties of the bump-function we obtain∣∣∣∣∫

Rn

ωε(x)φ(x)dx− φ(0)

∣∣∣∣ ≤ ∫
|x|≤ε

ωε(x)|φ(x)− φ(0)|dx < τ.
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Another fundamental property of the space D′(Ω) is its completeness.

Theorem 8.5. Let (fj) be a sequence in D′(Ω) such that for every ϕ ∈ D(Ω) the sequence (〈fj , ϕ〉)
converges in R. Consider the map f : D(Ω) −→ R defined by

〈f, ϕ〉 := lim
j−→∞

〈fj , ϕ〉, ϕ ∈ D(Ω).

Then f ∈ D′(Ω).

Proof. The linearity of f is obvious so we just need to establish its continuity. Let ϕk −→ 0 as
k −→ ∞ in D(Ω). Arguing by contradiction suppose that 〈f, ϕk〉 does not converge to 0. Passing
to a subsequence we may assume that there exists an ε > 0 such that |〈f, ϕk〉| ≥ 2ε for all k.
Since 〈f, ϕk〉 = limj−→∞〈fj , ϕk〉, for every k there exists jk such that |〈fjk , ϕk〉| ≥ ε. However, this
contradicts the following statement:

Lemma 8.6. Let (fk) be a sequence in D′(Ω) satisfying assumptions of Theorem 8.5 and ϕk −→ 0
in D(Ω). Then 〈fk, ϕk〉 −→ 0, k −→∞.

Thus, in order to complete the proof of the theorem it suffices to prove the lemma.

Proof of Lemma 8.6. Suppose on the contrary that the statement of the lemma is false. Passing
to a subsequence we may assume that |〈fk, ϕk〉| ≥ C > 0. Since ϕk −→ 0 in D(Ω), we have:

(a) ϕk = 0 for all k outside a compact subset K ⊂ Ω.
(b) For every α the sequence Dαϕk converges uniformly to 0.
Passing to a subsequence we can assume that any k = 0, 1, 2, . . . ,

|Dαϕk(x)| ≤ 1/4k, |α| ≤ k.
Set ψk = 2kϕk; then

|Dαψk(x)| ≤ 1/2k, |α| ≤ k.(2)

Furthermore, ψk −→ 0 in D(Rn) and every series of type
∑

s ψks(x) converges in D(Ω). On the
other hand

|〈fk, ψk〉| = 2k|〈fk, ϕk〉| ≥ 2kC −→∞ as k −→∞.(3)

In order to achieve a contradiction, we construct by induction suitable subsequences (fks) and (ψks)
that satisfy inequalities (7) and (8) below. Choose fk1 and ψk1 such that |〈fk1 , ψk1〉| ≥ 2. This is
always possible in view of (3). Suppose that fkj , ψkj , j = 1, ..., s− 1, are already constructed. We
wish to find fks , ψks . Since ψk −→ 0, k −→ ∞ in D(Ω), we have limk→∞〈fkj , ψk〉 −→ 0, for any
j = 1, ..., s− 1, and so there exists N such that for k ≥ N

|〈fkj , ψk〉| ≤ 1/2s−j , j = 1, ..., s− 1.(4)

Moreover, since
lim
k→∞
〈fk, ψkj 〉 = 〈f, ψkj 〉 j = 1, ..., s− 1,

there exists N1 ≥ N such that for all k ≥ N1

|〈fk, ψkj 〉| ≤ |〈f, ψkj 〉|+ 1, j = 1, ..., s− 1.(5)

Finally, in view of (3) we fix ks ≥ N1 such that

|〈fks , ψks〉| ≥
s−1∑
j=1

|〈f, ψkj 〉|+ 2s(6)
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Now it follows from (4), (5), (6) that the functions fks and ψks satisfy

|〈fkj , ψks〉| ≤ 1/2s−j , j = 1, ..., s− 1,(7)

|〈fks , ψks〉| ≥
s−1∑
j=1

|〈fks , ψkj 〉|+ s+ 1.(8)

This gives the inductive construction of the required subsequences. Set

ψ(x) =
∞∑
s=1

ψks(x)

By (2) this series converges in D(Ω). Its sum ψ ∈ D(Ω) satisfies

〈fks , ψ〉 = 〈fks , ψks〉+
∞∑

j=1,j 6=s
〈fks , ψkj 〉

Therefore, keeping in mind (7), (8) we obtain

〈fks , ψ〉 ≥ |〈fks , ψks〉| −
s−1∑
j=1

|〈fks , ψkj 〉| −
∞∑

j=s+1

|〈fks , ψkj 〉|

≥ s+ 1−
∞∑

j=s+1

1/2j−s = s

that is 〈fks , ψ〉 −→ ∞ as s −→ ∞. This contradicts the condition 〈fk, ψ〉 −→ 〈f, ψ〉, which
competes the proof. �

8.3. Multiplication of distributions. The product of two functions of class L1
loc(R) in general

is not in this class (consider, for instance, f(x) = |x|−1/2 and f2). This example shows that it is
impossible to define in a natural way even the product of regular distributions. In fact one can
show that it is impossible to define a multiplication of two distributions which satisfies the standard
algebraic properties (commutativity, associativity,...). However, one can define the product of a
distribution f ∈ D′(Ω) and a function a ∈ C∞(Ω).

First, consider the case when f ∈ L1
loc(Ω), i.e., f is a regular distribution. Then the distribution

corresponding to the usual product af acts on a test-function ϕ by

〈Taf , ϕ〉 =

∫
Ω
a(x)f(x)ϕ(x)dx = 〈Tf , aϕ〉.

For the case of an arbitrary distribution f we take the right-hand side of this equality as a definition
of the distribution af , i.e., we set

〈af, ϕ〉 := 〈f, aϕ〉, ϕ ∈ D(Ω).

Observe two immediate properties of the algebraic operation of multiplication of a distribution
by a smooth function a:

(a) Linearity. For every f, g ∈ D′(Ω) and real λ, µ we have

a(λf + µg) = λ(af) + µ(ag)

(b) Continuity. If fj −→ f in D′(Ω) then afj −→ af in D′(Ω).
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Example 8.4. a(x)δ(x) = a(0)δ(x), since

〈aδ, φ〉 = 〈δ, aφ〉 = a(0)φ(0) = (a(0)δ, φ〉
�

Example 8.5. xP 1
x = 1. Indeed, for any φ ∈ D(Ω), we have

〈xP 1

x
, φ〉 = 〈P 1

x
, xφ〉 = v.p.

∫
R

xφ(x)

x
dx =

∫
R
φ(x)dx = 〈1, φ〉.

�

8.4. Composition with linear maps. Let f be a function of class L1
loc(Rn) and let u : x 7→ Ax+b

be a bijective linear map of Rn, i.e., detA 6= 0. Given φ ∈ D(Ω) consider

〈Tf◦u, φ〉 =

∫
f(Ay + b)φ(y)dy = |detA|−1

∫
f(x)φ(A−1(x− b))dx

= |detA|−1〈Tf , φ(A−1(x− b))〉.
For an arbitrary f ∈ D′(Ω) we take the last equality as a definition of the distribution f ◦ u =
f(Ay + b), that is,

〈f(Ay + b), φ〉 := | detA|−1〈f, φ(A−1(x− b))〉.
The distribution f(x+ b) is called the translation of a distribution f by a vector b. In particular,

〈δ(y − a), φ〉 = 〈δ, φ(x+ a)〉 = φ(a)

Recall that we also denoted above this distribution by δa.

8.5. Dependence on a parameter. The continuity of distributions implies their ”good” be-
haviour under an action on test-functions depending on a real parameter. We will often use this
property and its variations.

Theorem 8.7. Let X and Y be domains in Rn and Rm respectively and ϕ ∈ C∞(X×Y ). Suppose
that there exists a compact subset K ⊂ X such that ϕ(x, y) = 0 for every (x, y) with x /∈ K. Then
for every f ∈ D′(X) the function

F : Y 3 y 7→ 〈f(x), ϕ(x, y)〉
is of class C∞(Y ) and

Dα
y 〈f(x), ϕ(x, y)〉 = 〈f(x), Dα

yϕ(xt, y)〉

Proof. (a) Let us show that F is a continuous function. Let yk ∈ Rm be a sequence converging to
y ∈ Y . We can assume that the points yk are in a fixed closed ball B ⊂ Y .Then

‖ Dβ
xϕ(x, yk)−Dβ

xϕ(x, y) ‖C(X)≤‖ ∇Dβ
xϕ(x, y) ‖C(K×B) |yk − y|

Since the supports of all functions x 7→ Dβ
xϕ(x, yk) are contained in K, the sequence ϕ(x, yk)

converges to ϕ(x, y) as k −→∞ in D(X) and F (yk) −→ F (y), k −→∞ by continuity of f .
(b) Next we study the partial derivatives of F . For the element ej , j = 1, ...,m, of the standard

basis of Rm, and every fixed y ∈ Y we have

ϕ(x, y + tej)− ϕ(x, y)

t
−→ ∂

∂yj
(ϕ(x, y)), t −→ 0

in D(X). Therefore,

1

t
(F (y + tej)− F (y)) = 〈f(x),

1

t
(ϕ(x, y + tej)− ϕ(x, y))〉 −→ 〈f(x),

∂

∂yj
ϕ(x, y)〉
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Hence, the partial derivative of F in yj exists and

∂

∂yj
〈f(x), ϕ(x, y)〉 = 〈f(x),

∂

∂yj
ϕ(x, y)〉.

Part (a) shows that the partial derivative ∂
∂yj

F is continuous. Proceeding by induction, we obtain

that F ∈ C∞(Y ) and satisfies the derivation rule stated in the theorem. �


