$$
y=f(x)
$$

$$
\frac{f(a)-f\left(x_{0}\right)}{a-x_{0}}=m
$$

tangent line

$$
\text { slope of }=\lim _{a \rightarrow x} \frac{f(a)-f\left(x_{0}\right)}{a-x_{0}}
$$ tangent line $a \rightarrow x_{0} \quad \underbrace{a-x_{0}}_{h^{11}}$

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

derivative of f also/ slope of at x 。
Example: $f(x)=y=\frac{2}{x}$

$$
x_{0}=1
$$

find $f^{\prime}(1)$, and the equation of the tangent line passing through $(1,2)$.

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{2}{1+h}-2}{h}=\lim _{h \rightarrow 0} \frac{\frac{2-2(1+h)}{(1+h)}}{h}
$$

$f^{\prime}(1), f$

$$
=\lim _{h \rightarrow 0} \frac{x-y-2 k}{h(1+h)}=\lim _{h \rightarrow 0} \frac{-2}{1+h}
$$

$$
S_{0}^{\prime \prime}\left(\frac{2}{x}\right)^{\prime}(1)=-2
$$

The tangent line passes through $(1,2)$ and has slope $=-2$. So its equation ふ

$$
y-2=-2(x-1)
$$

$J \quad y=-2 x+4$
signore wsw that $y=f(t)$ vepresents the position function of an object at time t.

So, at time to the object is distance yo from The reference points corresponds $f_{0} t=0$

$$
\left[\begin{array}{l}
\text { slope of } f=\frac{y_{1}-y^{\prime}}{t_{1}-t} \\
\text { velocity of } \\
\text { the object } \\
\text { over the interval } t_{1} \text {-to. }
\end{array}\right.
$$

As $t_{1} \rightarrow t$, slope fine the instantamous $\begin{aligned} & \text { velocity } \\ & \text { tangent line } \\ & \text { at tine to. }\end{aligned}$
So the velocity of = The derivative
the spiect $t=$ of the distance (or position) function
cA rock is thrown upward on the planet Mars with a velocity of $10 \mathrm{~m} / \mathrm{s}$, its height (in meters) after t seconds is given by $\mathrm{H}=10 \mathrm{t}-1.86 \mathrm{t}^{\wedge} 2$.

1) Find the velocity of the rock after 1 second
2) Find the velocity at time $t=a$
3) When will the rock hit the surface
4) With what velocity will the rock hit the surface?

Solution:

(1) velocity at $t=1$ is $H^{\prime}(1)$.
(2) velocity at $t=4$ is $H^{\prime}(a)$.
(3) $\quad H=0 \Rightarrow 10 t-1.86 t^{2}=0$

$$
t \cdot(10-1.86 t)=0
$$

(4) velocity $=H^{\prime}\left(\left(t_{0}\right)\right.$ Ex: complete the solution by computing

