Examples:
$1 f(x)=\ln (\ln x), f^{\prime \prime}(x)=$?

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\ln x} \cdot(\ln x)=\frac{1}{x \ln x} \\
& f^{\prime \prime}(x)=\left(\frac{1}{x \ln x}\right)^{\prime}=-\frac{(x \cdot \ln x)^{\prime}}{x^{2}(\ln x)^{2}}=-\frac{\ln x+1}{x^{2}(\ln x)^{2}} .
\end{aligned}
$$

(2) $y=(\sin x)^{x} \quad$ Use logarithmic differentiation

$$
\begin{gathered}
\ln y=\ln \left[(\sin x)^{x}\right]=x \cdot \ln (\sin x) \\
\frac{1}{y} \cdot y^{\prime}=\ln (\sin x)+x \cdot \frac{1}{\sin x} \cdot \cos x \\
y^{\prime}=y \cdot[\ln (\sin x)+x \cdot \cot x] \\
y^{\prime}=(\sin x)^{x}[\ln (\sin x)+x \operatorname{ditf} x]
\end{gathered}
$$

The bottom line: Any function given by a formula fart involves standard functions $\left(e^{x}, \sin x, \sin x, \ln x, x^{n}, \ldots\right)$ can be differentiated!!!

Problem A: Two cars start moving from the same point. One travels south at 60 km per hour, and the other travels west at $25 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between the cars increasing at time t?

At a given time t the distance d between cars is given by
1
 60 t
d between cars is given by

$$
\begin{aligned}
& d=\sqrt{(25 t)^{2}+(60 t)^{2}} \\
&=\sqrt{625 t^{2}+3600 t^{2}}=\sqrt{4225} t \\
&=65 \cdot t
\end{aligned}
$$

$$
d=d(t)=65 \cdot t
$$

rate of change is $\frac{d(d)}{d t}=d^{\prime}(t)=65(\mathrm{~km} / \mathrm{h})$.

Problem B: A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m . If water is being pumped into the tank at a rate of $2 \mathrm{~m}^{\wedge} 3 / \mathrm{min}$, find the rate at which the water level is rising when the water is 3 m deep.

Let h be the level
of the water at time t

$$
h=h(t)
$$

Let $r(t)$ be radius of the circle that represuts the surface of the water.
Let $V(t)$ be the volume of the
water pumped into the cone at time t.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h=v_{0} l u m e \text { of a cone } \\
& V(t)=\frac{1}{3} \pi \cdot(r(t))^{2} \cdot h(t) \quad\left(\begin{array}{c}
\text { Need } t_{0} \text { find } \\
h^{\prime} \text { at a time } t_{0} \\
\text { when } h\left(t_{0}\right)=3 .
\end{array}\right)
\end{aligned}
$$

What else do we know:

$$
\begin{aligned}
& V^{\prime}(t)=\frac{d V}{d t}=\begin{array}{r}
\text { rate of change of } \\
\text { the volume of } \\
\text { the water }
\end{array} \\
& \Rightarrow r=\frac{1}{2} h \text {, or } r(t)=\frac{1}{2} h(t), \Rightarrow \\
& \Rightarrow(t)=\frac{1}{3} \pi\left(\frac{\mathrm{~min}^{3}}{2}\right) \\
& \Rightarrow h(t)=\frac{\pi}{12} h^{3}(t) .
\end{aligned}
$$

Imnlinit different : tron.

Implicit differentiation:

$$
\begin{gathered}
V^{\prime}(t)=\frac{\pi}{12} 3[h(t)]^{2} \cdot h^{\prime}(t) \\
h^{\prime}(t)=\frac{V^{\prime}(t)}{\frac{\pi}{12} 3(h(t))^{2}} \\
?=h^{\prime}\left(t_{0}\right)=\frac{2}{\frac{\pi}{x} \cdot 3 \cdot t_{0} 3^{2}}=\frac{8}{\pi \cdot 9}=\frac{8}{9 \pi}
\end{gathered}
$$

rate of change of h when $h=3$

$$
\begin{aligned}
& e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& {\left[e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \quad \text { Why }\left(e^{x}\right)^{1}=e^{x} ?\right.} \\
& {\left[\left(1+\frac{x}{n}\right)^{n}\right]^{\prime}=k\left(1+\frac{x}{n}\right)^{n-1} \cdot \frac{1}{y}=\left(1+\frac{x}{n}\right)^{n-1}} \\
& \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n-1}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{x}{n}\right)^{n} \cdot \frac{1}{1+\frac{x}{n}}\right] \\
& =e^{x} \cdot \lim _{n \rightarrow \infty}\left[\frac{1}{1+\frac{x}{n}}\right)=e^{x} \\
& 1
\end{aligned}
$$

