1
September 9, 2016 8:48 AM
(Text book, appel. D D)

- $\left.\begin{array}{rl}\sin (\theta+2 \pi) & =\sin \theta \\ \cos (\theta+2 \pi) & =\cos \theta\end{array}\right] \rightarrow \begin{aligned} & 2 \pi- \\ & \text { periodic }\end{aligned}$
$\left.\begin{array}{rl}\tan (\theta+\pi) & =\tan \theta \\ \cot (\theta+\pi) & =\cot \theta\end{array}\right\} \rightarrow \begin{array}{r}\pi \\ \text { periodic }\end{array}$
In fret, $\sin (\theta+2 \pi \cdot k)=\sin \theta$ for all k-integers.
Additional trig identitie:

$$
\begin{aligned}
& \sin (2 x)=2 \sin x \cos x \\
& \operatorname{css}(2 x)=\cos ^{2} x-\sin ^{2} x \\
& \operatorname{css}^{2} x=\frac{1+\cos 2 x}{2} \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2}
\end{aligned}
$$

e.g. $\sin 15^{\circ}=\sin \frac{\pi}{12}=\sqrt{\frac{1-\cos \frac{\pi}{6}}{2}}$
$\sqrt{1-\sqrt{3}}$

$$
=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{1}{2}-\frac{r_{3}}{4}}{ }^{2}
$$

2

The graph of cosine can be obtained from the graph of sine by shifting it $\frac{\pi}{2}$ units to the left!

3

$$
\begin{aligned}
\cdot y= & f(x+1) \\
& =g(x)
\end{aligned}
$$

shift the graph 1-mait left
$y=f(x)-2=h(x)$
shift the graph 2 units
down
(st)

Exponential functions (1.4)

$$
f(x)=b^{x} \quad b>0
$$

example $f(x)=2^{x}$
$2=$ base of the

$$
\begin{aligned}
& f(3)=2^{3}=2 \cdot 2 \cdot 2=8 \\
& f(10)=2^{10}=2 \cdot 2 \cdot \ldots \cdot 2=1024 \\
& f\left(\frac{1}{2}\right)=2^{\frac{1}{2}}=\sqrt{2}=1.41 \ldots \sqrt{4} \\
& f\left(\frac{3}{4}\right)=2^{\frac{3}{4}}=\sqrt[4]{2^{3}}=\sqrt[4]{8} \approx \\
& f\left(-\frac{1}{3}\right)=2^{-\frac{1}{3}}=\frac{1}{2^{1 / 3}}=\frac{1}{\sqrt[3]{2}} \\
& f(\sqrt{2})=\left(2^{\sqrt{2}} ? 2^{\pi}=?\right. \\
& \sqrt{2} \approx 1.41 \ldots
\end{aligned}
$$

5.

$$
f(x)=2^{-x}=\frac{1}{2^{x}}=\left(\frac{1}{2}\right)^{x}
$$

Laws of exp:

$$
\begin{array}{ll}
b^{x+y}=b^{x} \cdot b^{y} & \left(b^{x}\right)^{y}=b^{x \cdot y} \\
b^{x-y}=\frac{b^{x}}{b^{y}} & (a b)^{x}=a^{x} \cdot b^{x} \\
999, q^{a^{9}} ? 9^{99} & e=?
\end{array}
$$

