Problem 1: A farmer has 2400 m of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Let x be one side of the field, and
y be the other side (facing the river).

$$
\begin{aligned}
& \text { Area }=A=x \cdot y=x(2400-2 x) \\
& \begin{array}{c}
\text { Constraint: } \quad 2 x+y=2400 \\
y=2400-2 x
\end{array} \\
& \text { Ned to find the } y^{l o b e l} \max \text { for } A(x) \\
& \text { on the internal }[0,1200] . \quad\binom{x>0}{y>0}
\end{aligned}
$$

(i) Compete all crit. points of $A(x)$
(ii) Evaluate $A(x)$ at all crit, points annul the end points.
(iii) Choose the lavers value.

$$
\text { (i) } \begin{aligned}
A^{\prime}(x)=\left(2400 x-2 x^{2}\right)^{\prime}= & 2400-4 x=0 \\
x & =\frac{24000}{4}=600
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& A(0)=A(1200)=0 \\
& \text { (} 600)=2900.600-2.600^{2}>0 \\
& \text { Thin o the global max }
\end{aligned}
$$

This in the global max
Answer: 720,000
Problem 2: Find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius r.
Let a, b be the sides of
the inscribed rectangle.
Area $=A=a \cdot b$.
from the triangle $O A B$
we have

$$
\begin{aligned}
\frac{a^{2}}{4} \rightarrow \frac{\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}=r^{2} \Rightarrow a^{2}+b^{2}=4 r^{2}}{b} & =\sqrt{4 r^{2}-a^{2}}
\end{aligned}
$$

So $A(a)=a \cdot \sqrt{4 r^{2}-a^{2}}$
Need fo find the global max of $A(a)$.
To simplify calculations, we consider the function $f=A^{2}$ instead.

$$
\begin{aligned}
& f(a)=a^{2}\left(4 r^{2}-a^{2}\right)=4 r^{2} \cdot a^{2}-a^{4} \\
& f^{\prime}(a)=8 r^{2} a-4 a^{3}=4 a\left(2 r^{2}-a^{2}\right)=0 \\
& \quad a=0 \quad 2 r^{2}=a^{2} \\
& a=r \sqrt{2} \\
& \text { Interval } a \in[0,2 r]
\end{aligned}
$$

$$
\begin{aligned}
& A(0)=0, A(2 r)=0 \\
& \begin{array}{l}
A(\sqrt{2} \cdot r)=\sqrt{2} \cdot r: \sqrt{4 r^{2}-(\sqrt{2} r)^{2}} \\
2 r^{2}
\end{array}=\sqrt{2} \cdot r \cdot \sqrt{2} r \\
& \text { Global max. }
\end{aligned}
$$

The dimensions of the inçaribed rectangle
'The dimensions of the inscribed rectangle win the largest area are:

Problem 3: Find an equation of the line through the point $(3,5)$ that cuts off the least area from the first quadrant.

Ilea: field equation of the line.

$$
y=m x+b
$$

m-variable, foul b from the fact that The line passes through $(3,5)$

$$
\begin{aligned}
& y-y_{0}=m\left(x-x_{0}\right) \quad\left(x_{0}, y_{0}\right)=(3,5) \\
& y-5=m(x-3) \\
& y=m \cdot x+(5-3 m) \\
& \text { IO find } A: y=0 \Rightarrow m x+5-3 m=0 \\
& \\
& \quad A\left(\frac{3 m-5}{m}, 0\right) \\
& \text { To find } B: x=\frac{3 m-5}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { To find } B: \quad x=0 \Rightarrow|y=5-3 m| \\
& B(0,5-3 m) \\
& \text { Area of } \Delta: \frac{1}{2}|O A| \cdot|O B|=\frac{1}{2}\left(\frac{3 m-5}{m}\right) \cdot(5-3 m) \\
& A(m)=\frac{1}{2}\left(\frac{3 m-5)(5-3 m)}{m} \quad \cdots\right.
\end{aligned}
$$

Problem 4: Show that of all the rectangles with a given area, the one with smallest perimeter is a square.

