Problem 3: Find an equation of the line through the point $=9 m^{2}-30 m+25$ $(3,5)$ that cuts off the least area from the first quadrant
[Continued] $A(m)=-\frac{1}{2} \frac{(3 m-5)^{2}}{m}, m<0$

$$
\begin{aligned}
& A^{\prime}(m)=-\frac{1}{2} \frac{(18 m-30) m-\left(9 m^{2}-30 m+25\right)}{m^{2}}=0 \\
& \Rightarrow 18 m^{2}-30 m^{2}-9 m^{2}+30 m-25=0 \\
& \Rightarrow 9 m^{2}-25=0 \quad m= \pm \frac{5}{3} \\
& m=-\frac{5}{3} \Rightarrow y=m x+(5-3 \cdot m \\
& \Rightarrow y=-\frac{5}{3} \cdot x+10
\end{aligned}
$$

Problem 4: Show that of all the rectangles with a given area, the one with smallest perimeter is a square.

$A=a \cdot b-$ constraint $\Rightarrow b=\frac{A}{a}$
$P=2(a+b)-B$ tominimize

$$
P(a)=P=2\left(a+\frac{A}{a}\right)=\frac{2\left(a^{2}+A\right)}{a}
$$

$$
\begin{gathered}
\frac{d P}{d a}=2 \cdot \frac{2 a^{2}-\left(a^{2}+A\right)^{\prime}}{a^{2}}=0 \\
a^{2}-A=0 \Rightarrow a= \pm \sqrt{\frac{d P}{d a}}=2
\end{gathered}
$$

So $a=\sqrt{A}, \quad b=\frac{A}{a}=\frac{A}{\sqrt{A}}=\sqrt{A}$.
Since $a=b$, the smallest perimeter is of
(Since $a=b$, the smallest perimeter is of
a square.
Why is this a min, not max?

49. Antiderivatives

Def: A function $F(x)$ is called an antiderivative of $f(x)$ on the interval $I=[a, b]$, if

$$
F^{\prime}(x)=f(x) \text { for all } x \in I .
$$

Examples: 1) $f(x)=x^{2}$
An antilerivative of $f(x)$ is

$$
F(x)=\frac{1}{3} x^{3} \quad F^{\prime}(x)=\left(\frac{1}{3} x^{3}\right)=x^{2}
$$

2)

$$
\begin{aligned}
& f(x)=x^{4} \quad F_{1}(x)=\frac{1}{3} x^{3}+13 \\
& F(x)=\frac{1}{5} x^{5}, \quad F^{\prime}(x)=\frac{1}{5} \cdot 8 \cdot x^{4}=x^{4} \\
& F_{1}(x)=\frac{1}{5} x^{5}+C, \quad C=\text { some constant. }
\end{aligned}
$$

So Antiderivative is not a unique function.
Theorem: if $F_{1}(x)$ and $F_{2}(x)$ are antiderivatives of $f(x)$, Then there exists a constant C sit. $F_{1}(x)=F_{2}(x)+C$.
Proof: Consider $F(x)=F_{1}(x)-F_{2}(x)$. Then

$$
F^{\prime}(x)=F_{1}^{\prime}(x)-F_{2}^{\prime}(x)=f(x)-f(x)=0
$$

Claim: if $\mathbb{F}^{\prime}(x)=0$ for all x, then

This follows from the Mean Value Theorem. Indeed, if $F\left(x_{1}\right) \neq F\left(x_{2}\right)$ for same x_{1}, x_{2}

Then By the MレT: $F\left(x_{2}\right)-F\left(x_{1}\right)=F^{\prime}(c)\left(x_{2}-x_{1}\right)$
for same $c \in\left(x_{1}, x_{2}\right)$.

$$
\Rightarrow F\left(x_{1}\right)=F\left(x_{2}\right) \Rightarrow F(x)=\text { cost }
$$

So if $F(x)$ is some antiderivative of $f(x)$ Then $F(x)+C$ is the unset general form of antiderivative of f.

Function $f(x)$	Antidecivative of $f(x)$		
x^{n}	$\frac{1}{n+1} x^{n+1}+C, n \neq-1$		
$\frac{1}{x}$	$\ln \|x\|+C$		
e^{x}	$e^{x}+c$	\quad	$\ln (-x \mid / 1$
:---			
$=\ln (-x \cdot x)$			
$=\ln (-1+1$			
$(\ln x)^{\prime}=\frac{1}{x} \quad$ true for $x>0$	\quad	$\ln x$	
:---			

$$
\left.\begin{array}{l}
x \ln |x|= \begin{cases}\ln x, & x>0 \\
\ln (-x)^{\prime}, & x<0\end{cases} \\
(\ln |x|)^{\prime}= \begin{cases}\frac{1}{x}, & x>0 \\
\frac{1}{-x} \cdot(-1)=\frac{1}{x}, x<0\end{cases} \\
\frac{1}{1+x^{2}} \quad \tan ^{-1} x+C
\end{array}\right\} \begin{aligned}
& \left(e^{x+c}\right)^{\prime}=e^{x+c} \begin{array}{l}
\neq e^{x} \\
\text { if } c \neq 0
\end{array}
\end{aligned}
$$

