November 9, 2016 1:19 PM

Problem 3: Find an equation of the line through the point
(3.3) that cuts off the loss area from the first quadrant:
(Gurthmod)
$$A(m) = -\frac{1}{2} \frac{(Sm - 5)^2}{m}$$
, $m < 0$
 $A'(m) = -\frac{1}{2} \frac{((Sm - 50)m - (qm^2 - 30m + 25))}{m^2} = 0$
 $\Rightarrow (Sm^2 - 30m - qm^2 + 30m - 25 = 0)$
 $=) (Sm^2 - 30m - qm^2 + 30m - 25 = 0)$
 $=) (Sm^2 - 25 = 0) \quad m = \pm \frac{5}{3}$
 $m = -\frac{5}{3} \Rightarrow M = M \times \pm (5 - 3 \cdot M)$
 $\Rightarrow M = -\frac{5}{3} \Rightarrow M = M \times \pm (5 - 3 \cdot M)$
 $\Rightarrow M = -\frac{5}{3} \cdot \times \pm 10$
Problem 4: Show that of all the rectangles with a given
area, the one with smallest perimeter is a square.
 $A = a \cdot b - constraint = b = \frac{A}{a}$
 $P = 2(a + b) - i3$ to minimize
 $P(A) = P = 2(a + \frac{A}{a}) = \frac{2(a^2 + A)}{a}$
 $T \cdot find A = \frac{5^{3}}{2} = 3 = A = \pm \sqrt{A}$.
 $So(a = \sqrt{A}), \quad b = \frac{A}{a} = \frac{A}{\sqrt{A}} = \sqrt{A}$.
Since $a = b$, the smallest perimeter is of A

New Section 3 Page 1

Since a=b, The smallest perimeter is of A square. My is this a min, not max? + VA VA+ dP da P loc. min. 49. Antiderivatives Def: A function F(X) is called an antiderivative of f(x) on the internal I=[a,b], if F'(X) = f(X) for all $X \in I$ Examples: 1) f(x)=x² An antiderivative of fix) is $F(x) = \frac{1}{3}x^{3} + \frac{1}{3}(x) = (\frac{1}{3}x^{3}) = x^{2}$ $F_{1}(x) = \frac{1}{3}x^{3} + \frac{1}{3} + \frac{1}{3}$ $F(x) = \frac{1}{5} X^5 \qquad F'(x) = \frac{1}{5} \cdot x \cdot x = x^4$ FI(X) = EXS+C C = some constant. So Antiderivative is not a maighe function. Theorem: if F,(X) and F2(X) are ant; derivatives of f(x), Then there exists a constant C s.t. FI (x) = F2 (x) + C. Proof: Consider F(X)=F,(X)-F2(X). Then $F'(X) = F'_1(X) - F'_2(X) = f(X) - f(X) = 0.$ Claim: if F'(X)=0 for all X, then

F = const.This follows from the Mean Value Thesem. Indeed, if $F(X_1) \neq F(X_2)$ for some X_1, X_2 Then by the MVT: $F(X_2) - F(X_1) = F'(c)(X_2 - X_1)$ for some $C \in (X_1, X_2)$. =) $F(x_1) = F(x_2) \cdot = F(x) = const.$ J So if F(X) is some autiderivative of f(X) Then F(X)+C is the uset general form it antiderivative of f. Function f(x) [Antidecivative of f(x) $\frac{1}{n+1} \times (x^{n+1} + C), n \neq -1.$ Xn ln|X|+C $\frac{1}{X}$ extc Q X \$~(-x)/ $(ln x) = \frac{1}{x}$ true for x > 0 $=h(-(\cdot X))$ = lu (-1) + lu X $\left(\frac{h|x|}{x}-\frac{1}{x}\right)$ for $x \neq 0$ $\frac{1}{2} \frac{1}{2} \ln |x| = \left\{ \ln x, x>0 \\ \ln (-x), x<0 \right\}$ $\left(\ln |\mathbf{X}|\right) = \begin{cases} \pm & , \ \mathbf{X} > \mathbf{0} \\ \frac{1}{-\mathbf{X}} \cdot (-1) = \pm & , \ \mathbf{X} < \mathbf{0} \end{cases}$ tan'x + C 1+X2 $\left(e^{X+c}\right)' = e^{X+c} \neq e^{X+c}$ if (= 0