Homework 2.

Due October 7.

- 1. Show that if a function f(z) satisfies the Cauchy-Riemann equations at a point z_0 , then all directional derivatives of f at z_0 have the same value.
- 2. Let $P(z, \overline{z}) = \sum_{m,n} z^m \overline{z}^n$ be a polynomial in z and \overline{z} . Prove that if there exists at least one nonzero monomial for which $c_{m,n} \neq 0$ with n > 0, then the set of points where $P(z, \overline{z})$ is \mathbb{C} -differentiable is nowhere dense in \mathbb{C} .
- 3. Suppose that P is a polynomial and that $\frac{\partial}{\partial z}P = \frac{\partial}{\partial \overline{z}}P = 0$ for all z. Prove that $P \equiv \text{const.}$
- 4. Textbook, Ch. 2, Problem 4.
- 5. Textbook, Ch. 3, Problem 7.
- 6. (MATH 9024 only) Let $U = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Let

$$\phi(z) = \frac{\alpha z + \beta}{\gamma z + \delta},$$

where α , β , γ , δ are real numbers with $\alpha\delta - \beta\gamma > 0$. Prove that $\phi: U \to U$ is one-to-one and onto

Conversely, prove that if

$$\psi(z) = \frac{az+b}{cz+d}, \quad a, b, c, d \in \mathbb{C}$$

is one-to-one and onto as a function $\psi: U \to U$, then a, b, c, d are real (after multiplying the fraction by a scalar), and ad - bc > 0.