Homework 4. Due November 14.

- 1. Textbook, Problem 7 on page 74.
- 2. Textbook, Problem 12 on page 74.
- 3. Textbook, Problem 1 on page 90.
- 4. Suppose that f(z) is an entire function such that

$$\lim_{z \to \infty} f(z) = \infty.$$

Prove that there exists a point $z_0 \in \mathbb{C}$ such that $f(z_0) = 0$.

5. (MATH 9024 only) Prove that the function

$$f(z) = \sum_{j=0}^{\infty} 2^{-j} z^{2^j}$$

is holomorphic on the open unit disc $\mathbb{B}(0,1) = \{|z| < 1\}$ and continuous on its closure. Prove that if w is a 2^N -th root of unity, then

$$\lim_{r \to 1^-} |f'(rw)| = +\infty.$$

Deduce that f cannot be the restriction to $\mathbb{B}(0,1)$ of a holomorphic function defined on a connected open set that is strictly larger than $\mathbb{B}(0,1)$.