COMPLEX ANALYSIS II, MATH 9056, FALL 2017

HOMEWORK ASSIGNMENT 1.

Due October 3, in class.
1.1. Find the number of zeros of the polynomial $p(z)=z^{9}+2 z^{5}-2 z^{4}+z+3$ in the right half-plane.
1.2. Suppose that $f(z)$ is holomorphic in the closure of the unit disc $\mathbb{D}=\{|z| \leq 1\}$ and $|f(z)|=$ const on $\partial \mathbb{D}$. Prove that either $f=$ const, or $f(z)$ vanishes somewhere in \mathbb{D}.
1.3. Construct a sequence of nonunivalent holomorphic functions $\left\{f_{n}(z)\right\}$ in \mathbb{D} which converges normally to a function $f(z)$ univalent on \mathbb{D}.
1.4. Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, and

$$
f(0)=f^{\prime}(0)=\cdots=f^{(k-1)}(0)=0
$$

Prove that $|f(z)| \leq|z|^{k}$, for all $z \in \mathbb{D}$.
1.5. Let $f(z)$ be meromorphic in the unit disc \mathbb{D} and holomorphic in a neighbourhood of the unit circle $\partial \mathbb{D}=\{|z|=1\}$. Prove that for any number A such that

$$
|A|>\max _{z \in \mathscr{D}}|f(z)|
$$

the number of points in \mathbb{D} where f attains value A equals the number of poles of f in \mathbb{D}.

