COMPLEX ANALYSIS II, MATH 9056, FALL 2017

HOMEWORK ASSIGNMENT 1.

Due October 3, in class.

- 1.1. Find the number of zeros of the polynomial $p(z) = z^9 + 2z^5 2z^4 + z + 3$ in the right half-plane.
- 1.2. Suppose that f(z) is holomorphic in the closure of the unit disc $\mathbb{D} = \{|z| \leq 1\}$ and $|f(z)| = \text{const on } \partial \mathbb{D}$. Prove that either f = const, or f(z) vanishes somewhere in \mathbb{D} .
- 1.3. Construct a sequence of nonunivalent holomorphic functions $\{f_n(z)\}$ in \mathbb{D} which converges normally to a function f(z) univalent on \mathbb{D} .
- 1.4. Suppose $f : \mathbb{D} \to \mathbb{D}$ is holomorphic, and

$$f(0) = f'(0) = \dots = f^{(k-1)}(0) = 0.$$

Prove that $|f(z)| \leq |z|^k$, for all $z \in \mathbb{D}$.

1.5. Let f(z) be meromorphic in the unit disc \mathbb{D} and holomorphic in a neighbourhood of the unit circle $\partial \mathbb{D} = \{|z| = 1\}$. Prove that for any number A such that

$$|A| > \max_{z \in \partial \mathbb{D}} |f(z)|$$

the number of points in \mathbb{D} where f attains value A equals the number of poles of f in \mathbb{D} .