COMPLEX ANALYSIS II, MATH 9056, FALL 2017

HOMEWORK ASSIGNMENT 5.

Due December 5

- 5.1. Let $\{z_k\}$ be a sequence of distinct points in a domain Ω that accumulates on $\partial\Omega$. Let $\{m_k\}$ be a sequence of positive integers, and for each k, let a_{k0}, \ldots, a_{km_k} be complex numbers. Show that there exists a holomorphic function f(z) on Ω such that $f^{(j)}(z_k) = a_{kj}$ for $0 \le j \le m_k$ and for all k.
- 5.2. Suppose $\{u_n\}$ is a uniformly bounded sequence of harmonic functions on \mathbb{D} . Prove that there exists a subsequence $\{u_{n_{\nu}}\}$ that converges uniformly on compact subsets of \mathbb{D} .
- 5.3. Let $h(e^{i\theta})$ be a piecewise continuous function on the unit circle. Show that the Poisson integral $\tilde{h}(z)$ tends to $h(\zeta)$ as $z \in \mathbb{D}$ tends to any point ζ of the unit circle at which $h(e^{i\theta})$ is continuous.