MATH 9312 SUMMER 2013

HOMEWORK ASSIGNMENT 4. DUE JUNE 25.
4.1. Find a generalized solution to the differential equation on \mathbb{R} of the form

$$
\frac{d^{2}}{d x^{2}} u=\chi_{[0,1]}
$$

where $\chi_{[0,1]}$ is the characteristic function of the interval $[0,1] \subset \mathbb{R}$. Is the solution unique?
4.2. Let a, b be real numbers. Find the fundamental solutions for the differential operator

$$
D=a \frac{\partial^{2}}{\partial x_{1}^{2}}+b \frac{\partial^{2}}{\partial x_{2}^{2}}
$$

on \mathbb{R}^{2} with the standard coordinates $\left(x_{1}, x_{2}\right)$.
4.3. Prove that if a C^{2}-smooth function $u(x)$ on \mathbb{R}^{n} satisfies the inequality

$$
u(a)=\frac{1}{\sigma_{n} R^{n-1}} \int_{B(a, R)} u(x) d S
$$

for all balls $B(a, R) \subset \mathbb{R}^{n}$, then $u(x)$ is a harmonic function, i.e., $\Delta u=0$. Generalize this result to subharmonic functions.
4.4. Let $H^{1}(\Omega)$ be the space of $L^{2}(\Omega)$ functions whose first order partial derivatives in the distributional sense also belong to $L^{2}(\Omega)$. Prove that $H^{1}(\Omega)$ is a Hilbert space with respect to the scalar product

$$
[u, v]_{H^{1}(\Omega)}=\int_{\Omega} u v d x+\int_{\Omega}(\nabla u, \nabla v) d x
$$

4.5. Find the general form of a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ whose support is a finite set of points in \mathbb{R}^{n}.

