MATHEMATICS 9302: RIEMANN SURFACES. SUMMER 2014

HOMEWORK ASSIGNMENT 3.

Due June 19.

- 3.1. Prove that $H^0(\mathbb{P}_1,\mathbb{C})\cong H^2(\mathbb{P}_1,\mathbb{C})\cong \mathbb{C}$, and that $H^1(\mathbb{P}_1,\mathbb{C})\cong 0$.
- 3.2. Show that harmonic functions are correctly defined on any Riemann surface. Show that any harmonic function on a compact Riemann surface is constant.
- 3.3. Show that if h(z) is a complex-valued harmonic function such that zh(z) is also harmonic, then h(z) is holomorphic.
- 3.4. Show that a complex-valued function h(z) on a star-shaped domain $D \subset \mathbb{C}$ is harmonic if and only if $h(z) = f(z) + \overline{g(z)}$, where f(z) and g(z) are holomorphic functions on D.
- 3.5. Let u(z) be a continuous function from a domain $D \subset \mathbb{C}$ to $[-\infty, \infty)$. Suppose $u_n(z)$ is a decreasing sequence of subharmonic functions on D such that $u_n(z) \to u(z)$ for all $z \in D$. Show that u(z) is subharmonic.