MATHEMATICS 9302: RIEMANN SURFACES. SUMMER 2014

HOMEWORK ASSIGNMENT 4.

Due July 3.

- 4.1. Suppose that $F: X \to Y$ is a nonconstant holomorphic map between Riemann surfaces. (i) Show that F(X) is an open subset of Y.
 - (ii) Show that if X is compact, then F(X) = Y.
 - (iii) Use (ii) to prove the Fundamental Theorem of Algebra.
- 4.2. Let Ω be the annulus $\{a < |z| < b\}$ in \mathbb{C} . Let $\phi(z)$ be the function which is equal to a constant α on $\{|z| = a\}$, and to a constant β on $\{|z| = b\}$. Find the Perron function for the family $E(\phi)$.
- 4.3. Find Green's function for the unit disc $\mathbb{D} = \{z : |z| < 1\}$ with the pole at a point $\zeta \in \mathbb{D}$.
- 4.4. Let X be a Riemann surface, and let $u : X \to \mathbb{R}$ be a C^2 -smooth function. (i) Show that the property $\Delta u \ge 0$ is independent of the choice of a coordinate chart.
- (ii) Prove that u is subharmonic if and only if $\Delta u \ge 0$. 4.5. Show that if Green's function exists on a Riemann surface X, and $Y \subset X$ is a domain,
 - then Green's function exists on Y, and $g_Y \leq g_X$.