
INTRODUCTION TO RIEMANN SURFACES

SHORT SUMMARY OF LECTURES

1. Basic definitions and examples

1. Definition of a holomorphic function f : Ω→ C, where Ω is a domain in C. Unique contin-
uation property of holomorphic functions.

2. An analytic element is a pair F = (f, U), where f ∈ O(U) is a holomorphic function given
by a convergent power series centred at a point z0 ∈ U , and U = {z ∈ C : |z − z0| < R} is
the domain of convergence of the power series. We say that an analytic element F = (f, U) is
an immediate analytic continuation of an analytic element G = (g, V ), if f |U∩V = g|U∩V . We
say that F = (f, U) is an analytic continuation of G = (g, V ) if there exists a chain of analytic
elements Hj = (hj , Uj), j = 1, . . . , n, such that F = H1, G = Hn, and Hj is an immediate
analytic continuation of Hj−1. We say that F is an analytic continuation of G along a curve γ, if
in addition the centres of Uj can be chosen to be on γ. By uniqueness, the analytic continuation
does not depend on the choice of the analytic elements.

3. Monodromy Theorem: if an element F can be continued analytically along any path in a
simply connected domain Ω, then F extends to a holomorphic function F : Ω→ C.

4. Definition: An analytic function is the union of all analytic elements which are obtained by
analytic continuation of some analytic element F0. Examples:

√
z, log z, etc.

5. Two analytic functions agree if there exists a common analytic element. An analytic func-
tion can have at most countably many values at a given point (Poincaré - Volterra theorem).

6. Instead of analytic elements, one may consider germs of holomorphic functions.

7. A Riemann surface of an analytic function F on a domain Ω ⊂ C can be defined as follows:
Let R be the set of points A = {a, Fa(z)}, where a ∈ Ω, and Fa(z) is an analytic element defined
on a disc centred at a. Given ε > 0 and a point A ∈ R, the ε-neighbourhood of A is defined to be
the set

{B = {b, Fb(z)} : |a− b| < ε, Fb is an immediate analytic continuation of Fa}.
This defines a Hausdorff topology on R. The projection π : R → Ω is given by π({a, Fa(z)}) = a.
Then π is a local homeomorphism. Using π we define the complex structure on R, which turns
R into a Riemann surface. It is called the Riemann surface of the function F . For example, the
Riemann surface of

√
z is a two-sheeted cover of C \ {0}, and the Riemann surface of log z is an

infinite-sheeted cover of C \ {0}.
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The Riemann surface of an analytic function F is the natural domain of existence of the
holomorphic function π ◦ F , which is single-valued on R.

If we drop the assumption that R contains only analytic elements of one analytic function we
will obtain a topological space containing analytic elements of all analytic functions. A Riemann
surface of a particular analytic function is then a connected open set in R. If we consider in-
stead of analytic elements the germs of holomorphic functions, and define R similarly, we obtain
the stale space of the sheaf of germs of holomorphic functions. (This will not be used in the course).

8. Definition: A complex manifold of complex dimension n is a topological manifold of dimen-
sion 2n, whose transition function are biholomorphisms between open sets in Cn ∼= R2n. Theorem:
A Riemann surface of an analytic function F is a complex manifold of dimension 1.

9. Definition: A Riemann surface is a complex manifold of dimension 1.
10: Examples of Riemann surfaces:

(1) domains in C;
(2) P1

∼= C∩{∞}. The smallest atlas required for this surface has two coordinate charts. It can
also be given as a quotient of C2 \ {0} under the equivalence relation z ∼ w <=> z = λw,
λ ∈ C \ {0}. P1 is compact.

(3) The quotient C/2πZ is a Riemann surface, where 2πZ is a subgroup of {C,+}. It is
conformally equivalent to C \ {0}.

(4) Let ω1, ω2 be R-linearly independent vectors in C. Then

L = Zω1 + Zω2

is called a lattice. Again, it is a subgroup of {C,+}. The quotient X = C/L is a compact
Riemann surface. It is topologically S1 × S1, and is called a complex torus.

(5) If f : Ω→ Cn is a holomorphic map on a domain Ω ⊂ C, then

Γf = {(z, w) : z ∈ Ω, w = f(z)},

the graph of f is a Riemann surface.
(6) A parametrized holomorphic curve in Cn is a holomorphic map f : Ω→ Cn. If the gradient
∇f 6= 0, then its image f(Ω) is a Riemann surface. This follows from the holomorphic
version of the implicit function theorem. The points where ∇f = 0 are called the singular
points of the curve. Near these points f(Ω) is not a complex manifold.

(7) If f(z1, z2) is a holomorphic function on a domain D ⊂ C2, then the set

{z = (z1, z2) ∈ C2 : f(z) = 0}

is called a holomorphic curve. If∇f(z) 6= 0 for any z where f(z) = 0, then the holomorphic
curve is a Riemann surface.

2. Algebraic Curves

1. An affine algebraic curve in C2 is a holomorphic curve defined by a holomorphic polynomial.

2. A projective space Pn, n ≥ 1, can be obtained as a quotient space(
Cn+1 \ {0}

)
/ ∼, where z ∼ w <=> z = λw, λ ∈ C \ {0}.
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The space Pn can be equipped with homogeneous coordinates [z0, . . . , zn]. It is a compact complex
manifold of dimension n. The set

U0 = {[z0, . . . , zn] ∈ Pn : z0 6= 0}

can be identified with Cn. The set L∞ = {[z0, . . . , zn] ∈ Pn : z0 = 0} ∼= Pn−1 is called the
hypersurface at infinity.

3. A projective algebraic curve in P2 is defined as

{[z0, z1, z2] ∈ P2 : P (z0, z1, z2) = 0},

where P (z) is a homogeneous polynomial in C3 of degree d, i.e., it satisfies P (tz) = tdP (t) for
every t ∈ C. A projective curve is a compact subset of P2.

4. Given an affine algebraic curve X ⊂ C2, its compactification in P2 can be defined as follows.
If X is given by a polynomial P (w1, w2) of degree d > 0 on C2, consider the projectivization of
P (w):

P̂ (z0, z1, z2) = zd0P (z1/z0, z2/z0).

One can immediately verify that P̂ (z) is a homogeneous polynomial of degree d. Its zero set in

U0 coincides with X, and thus the projective curve P̂ (z) = 0} is closure of X in P2.

5. The closure of a complex line in Cn is called a projective line.

6. Theorem: If P (z0, z1, z2) is a homogeneous polynomial of degree d > 0, and 0 is the only
solution of

∂P

∂z0
=
∂P

∂z1
=
∂P

∂z2
= 0,

Then X = {P (z) = 0} ⊂ P2 is a compact Riemann surface.

3. Basic function theory on Riemann Surfaces

Holomorphic and meromorphic functions on Riemann surfaces. Local normal form of a holomor-
phic function: in a suitable coordinate system centred at a point z0 any nonconstant holomorphic
function F has the form z → zm, where m is a positive integer, and z0 corresponds to the origin.
The number m is called the multiplicity of the map F at the point z0, notation: m = Mult z0(F ).
A meromorphic function on a Riemann surface can be viewed as holomorphic map into P1.

Theorem 3.1. Let F : X → Y be a holomorphic map between compact connected Riemann
surfaces. Then the quantity

Deg (F ) =
∑

z∈F−1(w)

Mult z(F )

is independent of the choice of the point w ∈ Y . It is called the degree of the map F .

Corollary 3.1. Any meromorphic function on P1 is a quotient of two homogeneous polynomials
of the same degree.
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4. Classification of compact surfaces

Any orientable compact surface is homeomorphic to a sphere with g handles, g ≥ 0. A sphere
with g handles can be obtained by taking a connected sum of g tori. The nonorientable surface
RP2 can be obtained by attaching a disc to the boundary of a Möbius band. Any compact
nonorientable surface is homeomorphic to a connected sum of h copies of RP2.

Any Riemann surface is orientable, therefore, any compact Riemann surface is homeomorphic to
a sphere with g handles. A compact Riemann surface admits triangulation, i.e., a decomposition
of 2-simplices (images of a standard triangle in R2). The Euler characteristic of a surface S is
χ(S) = F −E + V , where F is the total number of faces (2-simplices), E is the number of edges
(1-simplice), and V is the number of vertices (0-simplices) of a triangulation. The number χ(S)
is independent of the choice of triangulation.

Theorem 4.1 (Riemann-Hurwitz Formula). Let F : X → Y be a nonconstant holomorphic map
between compact connected Riemann surfaces. Then

χ(X) = deg (F ) · χ(Y )−
∑
z∈X

(Mult z(F )− 1) .
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