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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

99. Factorization of Polynomials

99.1. Complex Polynomials. The set R of real numbers can be extended to a bigger set of the
so-called complex numbers. This is done by introducing a single imaginary number i =

√
−1.

Complex numbers can be written in the form z = a+ ib, where a, b ∈ R. In this representation a is
called the real part of z, and b the imaginary part of z, denoted respectively by Re z and Im z. Real
numbers can be viewed as a subset of complex numbers with zero imaginary part. Thus, denoting
the space of complex numbers by C, we have the following chain of inclusions

N ⊂ Q ⊂ R ⊂ C.

We may extend the definition of arithmetic operations on real numbers to the space of complex
numbers as follows:

(i) (a+ ib) + (a′ + ib′) = (a+ a′) + i(b+ b′)
(ii) (a+ ib) · (a′ + ib′) = (aa′ − bb′) + i(ab′ + a′b)

(iii)
a+ ib

a′ + ib′
=
aa′ + bb′

a′2 + b′2
+
ba′ − ab′

a′2 + b′2
i, if a′ + b′i 6= 0 = 0 + i0.

One can verify that when b = b′ = 0, the above formulas provide the usual operations of addition,
multiplication and division for reals. Note that i · i = i2 = −1, which in particular means that the
equation z2 + 1 = 0 over the set of complex numbers has two complex roots: i and −i. This is in
contrast with reals over which this equation has no solution.

With these operations on complex numbers we may define complex polynomials as functions on
complex numbers defined by

(1) P (z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an, where aj ∈ C.

If a0 6= 0, the n is called the degree of P (z). In particular, if we ignore the choice of the letter
for the unknown variable (x vs. z), the usual polynomials with real coefficients are examples of
complex polynomials. (In other words, a polynomial is called real if in (1), aj ∈ R for all j.) The
following theorem is usually known as the Fundamental Theorem of Algebra.

Theorem 99.1. Suppose P (z) is a complex polynomial of degree n > 0. Then P (z) has exactly n
complex roots.

In this theorem the number of roots should be counted with multiplicity, in other words, some
roots may have to be counted more than once. For example, z2 + 2z + 1 = (z + 1)2 = 0 has two
roots both of which are z = −1. In general, if w1, w2, . . . , wm are the distinct roots of a polynomial
P (z), then we can write

(2) P (z) = a0(z − w1)
k1(z − w2)

k2 . . . (z − wm)km .

This is called a factorization of a complex polynomial into complex linear factors. It is unique up
to a change of order. The exponent kj is called the multiplicity of the root wj . The Fundamental
Theorem of Algebra implies that k1 + k2 + · · · + km = n. The proof of Theorem 99.1 requires
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some knowledge of complex analysis, a branch of mathematics that studies functions of complex
variables.

Example 99.1. Consider the equation f(z) = z4+z2 = 0. According to the Fundamental Theorem
of Algebra, f(z) has four roots. These can be easily found. Indeed, z4 + z2 = z2(z2 + 1). Thus the
roots are z = 0 (counted twice), z = i and z = −i. So

f(z) = z2(z − i)(z + i)

is a factorization of this polynomial into linear factors. �

Note that not every real polynomial admits a factorization into real linear factors (e.g., x2 + 1).

99.2. Factorization of Real Polynomials. An important operation on complex numbers is com-
plex conjugation, or just conjugation, which is denoted by a horizontal bar, and defined as follows:

a+ ib = a− ib.
In other words, to conjugate a complex number we simply change the sign of the imaginary part
of the number. Note that if z is a real number, then z = z, i.e., conjugation leaves real numbers
unchanged.

Let w = a+ ib be a complex number. Then w = a− ib. Consider the expression(z −w)(z −w).
Then

(3) (z − w)(z − w) = z2 − wz − wz + ww = z2 − (w + w)z + ww.

We have w + w = (a + ib) + (a − ib) = 2a, and ww = (a + ib)(a − ib) = a2 + b2. Both are real
numbers. Thus the product of two monomials as above with conjugate free terms yields a degree
two polynomial with real coefficients.

Suppose now

(4) P (z) = zn + b1z
n−1 + · · ·+ bn−1z + bn, where bj ∈ R,

is a polynomial of degree n with real coefficients, and let ζ be a complex root of P (z). Then

ζn + b1ζ
n−1 + · · ·+ bn−1ζ + bn = 0.

Conjugation of both sides of this equation gives

ζ
n

+ b1ζ
n−1

+ · · ·+ bn−1ζ + bn = 0.

Note that coefficients bj did not change because conjugation does not change real numbers. We
also used here the fact that for z, w ∈ C, we have z + w = z + w, and z · w = z · w, which can be
verified directly. What the last equation tells us is that ζ is also a root of P (z). In other words, if
ζ is a complex root of P (z) and ζ is not a real number, then ζ is also a root of P (z). Thus we may
write

(5) P (z) = (z − x1)(z − x2) · · · (z − xm)(z − z1)(z − z1) · · · (z − zk)(z − zk),

where x1, . . . , xm are the real roots of P (x), and z1, z1, . . . , zk, zk are the pairs of complex roots and
their conjugates. Using the calculation in (3) we have

(z − z1)(z − z1) = z −A1z +B1, where A1 = 2Re z1, and B1 = (Re z1)
2 + (Im z1)

2,

and similarly for the other pairs of complex conjugate roots of P (z). Using this, and replacing z
with x in (5) yields

P (x) = (x− x1)(x− x2) · · · (x− xm)(x2 −A1x+B1)(x
2 −A2x+B2) · · · (x2 −Akx+Bk),

where all the coefficients are real numbers. Thus, we proved the following theorem.
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Theorem 99.2. Suppose P (x) is a real polynomial of degree n > 0. Then P (x) admits factorization
into a product of linear and quadratic factors with real coefficients.

This theorem is used in the theory of integration of rational functions using partial fractions.

Example 99.2. Let P (x) = x4 + 1. This polynomial does not have any real roots. Nevertheless,
according to Theorem 99.2, it can be factored into a product of two real polynomials. But what
are these? One possible solution would be to find complex roots of P (z) and then to multiply
the conjugate monomials as discussed above. However, finding complex roots is not an easy task.
Instead, we can try to factorize P (z) into two polynomials x2 + ax + 1 and x2 + bx + 1 for some
a, b ∈ R. We get

(x2 + ax+ 1)(x2 + bx+ 1) = x4 + ax3 + x2 + bx3 + abx2 + bx+ x2 + ax+ 1.

We set this equal to x4 + 1 and compare the coefficients of x3, x2, and x. It follows that a = −b
and ab = −2. So we may take a =

√
2 and b = −

√
2. This gives the required factorization:

x4 + 1 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1).
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