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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

2. Techniques of Integration

The rules of differentiation give us an explicit algorithm for calculating derivatives of all ele-
mentary functions, including trigonometric and exponential functions, as well as logarithms. By
comparison, integration of elementary functions in general is a more difficult task. In fact, some
integrals, such as ∫

e−x
2
dx,

∫
sin(x2) dx,

∫
sinx

x
dx,

∫
dx

lnx

cannot be expressed as elementary functions. To understand better this striking phenomenon,
recall that

∫
dx
x = lnx, and we see that integration of a rational function leads to a transcendental

function. So one may expect that integration of transcendental functions leads to an even bigger
class of functions that cannot be expressed as combinations of elementary functions, although from
the general theory of integration we know that these functions exist and are well-defined.

In this lecture we discuss some more advanced techniques of integration.

2.1. Integration by Parts. Let u = f(x) and v = g(x) be differentiable functions with continuous
derivatives. Then by the product rule: d(uv) = udv + vdu, or

(2.1) udv = d(uv)− vdu.

The antiderivative of the expression d (uv) is uv, and therefore, by integrating both sides of (2.1)
we obtain the formula of integration by parts:

(2.2)

∫
u dv = uv −

∫
v du.

The integration by parts formula can be used, for example, for integration of products of functions.

Example 2.1. To evaluate
∫
x cosxdx we let u = x, dv = cosxdx, so that du = dx and v = sinx,

and use (2.2):

(2.3)

∫
x cosxdx = x sinx−

∫
sinxdx = x sinx+ cosx+ C.

�

Application of the integration by parts formula requires breaking the integrand into two parts:
u and dv, the first of which should be differentiated and the second integrated. The choice of u
and dv should be such that integration of dv is relatively simple and that the the resulting integral
is simpler than the original.

Example 2.2. To compute
∫
x3 lnx dx we set u = lnx, dv = x3dx. Then∫

x3 lnx dx =
1

4
x4 lnx− 1

4

∫
x3dx =

1

4
x4 lnx− 1

16
x4 + C.

�
1
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If the integrand is not a product of functions, then the choice dx = dv may lead to a simplification
of the integral.

Example 2.3. ∫
lnx dx = x lnx−

∫
dx = x(lnx− 1) + C.

�

Sometimes it is necessary to apply integration by parts several times.

Example 2.4. ∫
x2 sinx dx =

∣∣∣∣u = x2; dv = sinxdx

∣∣∣∣
= −x2 cosx+ 2

∫
x cosx dx =

∣∣∣∣u = x; dv = cosx dx

∣∣∣∣
= −x2 cosx+ 2(x sinx+ cosx) + C.

�

Integration by parts can be used to evaluate definite integrals. In this case the formula of
integration by parts becomes

(2.4)

∫ b

a
u dv = uv

∣∣∣∣b
a

−
∫ b

a
v du.

Example 2.5. ∫ 1

0
tan−1 x dx =

∣∣∣∣u = tan−1 x; dv = dx

∣∣∣∣ = x tan−1 x

∣∣∣∣1
0

−
∫ 1

0

x dx

1 + x2

= tan−1(1)− 1

2
ln(x2 + 1)

∣∣∣∣1
0

=
π

4
− 1

2
ln 2.

�

Sometimes integration by parts can be used to obtain an equation that can be solved for the
unknown integral.

Example 2.6. To evaluate
∫

cosx exdx, we let u = cosx, dv = ex dx and use (2.2):∫
cosx ex dx = cosx ex +

∫
sinx ex dx.

We did not seem to achieve any visible simplification, so we apply integration by parts again to the
last integral above: ∫

sinx ex dx = sinx ex −
∫

cosx ex dx.

Combining everything together we obtain:∫
cosx ex dx = cosx ex +

(
sinx ex −

∫
cosx ex dx

)
.

By solving for
∫

cosx ex dx, we obtain∫
cosx ex dx =

1

2
(cosx+ sinx)ex + C.

�
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Successive use of integration by parts often leads to recursive (or reduction) formulas.

Example 2.7. Let

(2.5) Jn =

∫
dx

(x2 + 1)n
.

Prove the recurrent formula

(2.6) Jn+1 =
1

2n

(
x

(x2 + 1)n
+ (2n− 1)Jn

)
.

Solution: we use integration by parts for Jn. Let

u =
1

(x2 + 1)n
, dv = dx.

Then

du =
−2nx dx

(x2 + 1)n+1
, v = x.

Therefore,

Jn =
x

(x2 + 1)n
+ 2n

∫
x2 dx

(x2 + 1)n+1
=

x

(x2 + 1)n
+ 2n

∫
(x2 + 1)− 1

(x2 + 1)n+1
dx

=
x

(x2 + 1)n
+ 2nJn − 2nJn+1.

Formula (2.6) now can be obtained by solving the above identity for Jn+1.

2.2. Integration by Partial Fractions. Recall that a rational function is the quotient of two
polynomials. In this section we describe a general algorithm for integration of rational functions.

2.2.1. Basic Fractions. First we consider four simple rational functions, which we call the basic
fractions:

(2.7) I.
A

x− a
, II.

A

(x− a)k
, III.

Bx+ C

x2 + bx+ c
, IV.

Bx+ C

(x2 + bx+ c)k
,

where k is an integer bigger than one. We assume that in III and IV the quadratic terms are
irreducible, i.e., they cannot be factorized into linear factors. This is equivalent to requiring that
b2 − 4c < 0. Integration of the first two basic fractions is simple:∫

A

x− a
dx = A ln |x− a|+ C,∫

A

(x− a)k
dx =

A

(1− k)
· 1

(x− a)k−1
+ C.

For fractions III and IV we can complete the square

x2 + bx+ c =

(
x+

b

2

)2

+

(
c− b2

4

)
,

and use the change of variables t = x+ b
2 . This will simplify the integral.
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Example 2.8. ∫
xdx

(x2 + 2x+ 2)2
=

∫
xdx

((x+ 1)2 + 1)2
=

∣∣∣∣t = x+ 1, dt = dx

∣∣∣∣
=

∫
(t− 1) dt

(t2 + 1)2
=

∫
tdt

(t2 + 1)2
−
∫

dt

(t2 + 1)2
.

For the first integral we use the substitution y = t2 + 1 to get∫
tdt

(t2 + 1)2
=

1

2

∫
dy

y2
= − 1

2(t2 + 1)
= − 1

2(x2 + 2x+ 2)
.

For the second integral we can use the reduction formula (2.6):∫
dt

(t2 + 1)2
= J2 =

1

2

(
t

t2 + 1
+ J1

)
=

1

2

(
t

t2 + 1
+ tan−1 t

)
.

Thus, we obtain∫
xdx

(x2 + 2x+ 2)2
= − 1

2(x2 + 2x+ 2)
− 1

2

(
x+ 1

x2 + 2x+ 2
+ tan−1(x+ 1)

)
+ C =

= − x+ 2

2(x2 + 2x+ 2)
− 1

2
tan−1(x+ 1) + C.

�

2.2.2. Reduction to basic fractions. We call a rational function P (x)
Q(x) proper, if degP < degQ. Using

long division of polynomials, any rational function can be represented as the sum of a polynomial
and a proper rational function.

Example 2.9. The rational function 3x3−5x2+10x−3
3x+1 is not proper. Its proper representation has

the form
3x3 − 5x2 + 10x− 3

3x+ 1
= x2 − 2x+ 4− 7

3x+ 1
.

�

An important general fact from abstract algebra is the following theorem

Theorem 2.1. (i) Any polynomial of degree at least one admits factorization into a product of
linear and irreducible quadratic factors.

(ii) Any proper rational function can be represented as a finite sum of basic fractions.

The proof of part (i) of the theorem requires the knowledge of complex numbers. You can find
more details about this in the Appendix (this material is not part of the course curriculum). The
proof of part (ii) relies on part (i), but does not require additional knowledge beyond what we
already know.

As a corollary to Theorem 2.1 we conclude that the integral of any rational function can be given
by elementary functions. For simplicity we only present the final algorithm for the partial fraction

decomposition that allows us to integrate any rational function. Let P (x)
Q(x) be a proper rational

function. According to Theorem 2.1(i) we may factor Q(x) into linear and quadratic factors:

(2.8) Q(x) = C · (x− a1)m1 · · · · · (x− ak)mk · (x2 + b1x+ c1)
n1 · · · · · (x2 + blx+ cl)

nl ,

where x2+bjx+cj are irreducible quadratic terms and mj , nj are positive integers. We will consider
several cases depending on the factorization above.
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Case 1. Factorization (2.8) contains only unrepeated linear terms. In this case the following
partial fraction decomposition always holds.

(2.9)
P (x)

Q(x)
=

P (x)

(x− a1) · · · · · (x− ak)
=

A1

x− a1
+ · · ·+ Ak

x− ak
,

where Aj are some coefficients that can be found by forming a suitable system of linear equations.

Example 2.10. Evaluate ∫
x dx

(x+ 1)(x+ 2)(x− 3)
.

Solution: we write
x

(x+ 1)(x+ 2)(x− 3)
=

A1

x+ 1
+

A2

x+ 2
+

A3

x− 3
.

After bringing the right-hand side to a common denominator and equating the numerators on the
left and on the right we obtain

x = A1(x+ 2)(x− 3) +A2(x+ 1)(x− 3) +A3(x+ 1)(x+ 2).

By letting x = −1,−2, and 3 successively, we find that

−1 = −4A1, −2 = 5A2, 3 = 20A3,

i.e., A1 = 1
4 , A2 = −2

5 , A3 = 3
20 . Therefore,∫

x dx

(x+ 1)(x+ 2)(x− 3)
=

1

4
ln |x+ 1| − 2

5
ln |x+ 2|+ 3

20
ln |x− 3|+ C.

�

Remark: in the above example one can choose arbitrary values of x to find the coefficients Aj .
In general one will obtain a system of linear equations in Aj that can be solved using elimination
of variables or Cramer’s method. However, the choice x = −1,−2, and 3 makes the computations
particularly simple.

Case 2. Factorization (2.8) contains only linear terms some of which appear more than once.
In this case the partial fraction decomposition becomes

P (x)

Q(x)
=

P (x)

(x− a1)m1 · · · · · (x− ak)mk
=

=
A11

x− a1
+

A12

(x− a1)2
+ · · ·+ A1k

(x− a1)mk

+
A21

x− a2
+

A22

(x− a2)2
+ · · ·+ A2k

(x− a2)mk
+

· · ·+ Ak1
x− ak

+
Ak2

(x− ak)2
+ · · ·+ Akk

(x− ak)mk
.

Example 2.11. Find the partial fraction decomposition of

8

(x+ 1)(x− 1)3
.

Solution: We have

(2.10)
8

(x+ 1)(x− 1)3
=

A

x+ 1
+

B

x− 1
+

C

(x− 1)2
+

D

(x− 1)3
,
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where A,B,C,D are some numbers. To find these numbers we bring the right-hand side to a
common denominator, which gives

(2.11)
A(x− 1)3 +B(x+ 1)(x− 1)2 + C(x+ 1)(x− 1) +D(x+ 1)

(x+ 1)(x− 1)3
.

The numerator must be equal to the polynomial in the numerator on the left-hand side of (2.10),
i.e., must be equal to 8 identically. By plugging in x = 1 and x = −1 we obtain respectively

2D = 8 =⇒ D = 4,

A(−8) = 8 =⇒ A = −1.

Thus, the numerator in (2.11) becomes

(2.12) −(x3 − 3x2 + 3x− 1) +B(x3 − x2 + x+ 1) + C(x2 − 1) + 4(x+ 1).

To find the other coefficients, we compute the coefficients of the term x3 and the free term in (2.12),
and equate them to the corresponding polynomial of the original fraction (which is the constant
polynomial 8):

−x3 +Bx3 = 0 =⇒ B = 1,

1 + 1− C + 4 = 8 =⇒ C = −2.

So finally we get

8

(x+ 1)(x− 1)3
= − 1

x+ 1
+

1

x− 1
− 2

(x− 1)2
+

4

(x− 1)3
.

�

Case 3. Factorization (2.8) contains linear and quadratic terms none of which appear more than
once. In this case the following representation takes place:

P (x)

Q(x)
=

P (x)

(x− a1) · · · · · (x− ak)(x2 + b1x+ c1) · · · · · (x2 + blx+ cl)

=
A1

x− a1
+ · · ·+ Ak

x− ak
+

B1x+ C1

x2 + b1x+ c1
+ · · ·+ Blx+ Cl

x2 + blx+ cl
.

Example 2.12. Evaluate ∫
6x2 + x− 2

2x3 − x− 1
dx

We have 2x3 − x− 1 = (x− 1)(2x2 + 2x+ 1), where the quadratic factor is irreducible. According
to the above formula the appropriate partial fraction decomposition is

6x2 + x− 2

2x3 − x− 1
=

A

x− 1
+

Bx+ C

2x2 + 2x+ 1
.

By bringing the right-hand side to a common denominator and equating the numerators on both
sides we obtain a fraction whose numerator equals

6x2 + x− 2 = A(2x2 + 2x+ 1) + (Bx+ C)(x− 1).

Plugging x = 1 we find that A = 1. Now we equate the coefficients of x2 and the free terms on
both sides:

6 = 2 · 1 +B, −2 = 1− C,
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from which it follows that B = 4, C = 3. Therefore,∫
6x2 + x− 2

2x3 − x− 1
dx =

∫ (
1

x− 1
+

4x+ 3

2x2 + 2x+ 1

)
= ln |x− 1|+

∫
4x+ 3

2x2 + 2x+ 1
dx.

For the second integral we have∫
4x+ 3

2x2 + 2x+ 1
dx =

∫
4x+ 2

2x2 + 2x+ 1
dx+

∫
1

2x2 + 2x+ 1
dx

Here the first term on the right can be integrated using the substitution y = 2x2 + 2x+ 1:∫
4x+ 2

2x2 + 2x+ 1
dx =

∫
dy

y
= ln(2x2 + 2x+ 1),

while for the second term we observe that 2x2 + 2x+ 1 = 2(x+ 1
2)2 + 1

2 and so∫
dx

2x2 + 2x+ 1
=

∫
dx

2(x+ 1
2)2 + 1

2

= 2

∫
dx

4(x+ 1
2)2 + 1

= tan−1(2x+ 1),

where we used the substitution y = 2(x+ 1
2). Combining all the steps we obtain∫

6x2 + x− 2

2x3 − x− 1
dx = ln |x− 1|+ ln(2x2 + 2x+ 1) + tan−1(2x+ 1) + C.

�

Case 4. Factorization (2.8) contains quadratic terms some of which appear more than once.
This is, in fact, the most general case. The partial fraction decomposition will look similar to
Cases 2 and 3 with the difference that any factor in the denominator of the form (x2 + bx+ c)k will
give the following terms:

1

(x2 + bx+ c)k
=

A1x+B1

(x2 + bx+ c)
+

A2x+B2

(x2 + bx+ c)2
+ · · ·+ Akx+Bk

(x2 + bx+ c)k
.

Example 2.13. Write down the general partial fraction decomposition of

x3

(x2 − 2x+ 1)2(x2 + 2x+ 2)2
.

Do not compute the values of the involved coefficients.

Solution: First observe that the first quadratic term is reducible: (x2 − 2x + 1)2 = (x − 1)4.
Therefore,

x3

(x2 − 2x+ 1)2(x2 + 2x+ 2)2
=

x3

(x− 1)4(x2 + 2x+ 2)2

=
A1

x− 1
+

A2

(x− 1)2
+

A3

(x− 1)3
+

A4

(x− 1)4

+
B1x+ C1

x2 + 2x+ 2
+

B2x+ C2

(x2 + 2x+ 2)2
.

�
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2.3. Integration of Transcendental Functions. In this section we provide examples of integra-
tion of trigonometric functions and radicals.

Example 2.14. To compute
∫

sin2 x cos3 dx we use the substitution t = sinx:∫
sin2 x cos3 dx =

∫
t2(1− t2)dt =

t3

3
− t5

5
+ C =

sin3 x

3
− sin5 x

5
+ C.

�

Example 2.15. ∫
sin2 x dx =

∫
1

2
(1− cos 2x)dx =

x

2
− sin 2x

4
+ C.

�

Example 2.16.∫
dx

sinx
=

∫
sinx dx

sin2 x
=

∣∣∣∣y = cosx

∣∣∣∣ =

∫
dy

y2 − 1
=

1

2
ln

1− cosx

1 + cosx
+ C,

where we used integration by partial fractions in the last step. �

Example 2.17.∫ √
4− x2 dx =

∣∣∣∣x = 2 sin t; dx = 2 cos t dt

∣∣∣∣ =

∫
2 cos t 2 cos t dt

= 2t+ sin 2t+ C = 2t+ 2 sin t cos t+ C = 2 sin−1
x

2
+

1

2
x
√

4− x2 + C,

where the integration is done similarly to Example 2.15. �

2.4. The average of a function on an interval. If a function f(x) is continuous on an interval
[a, b], then the average of f on [a, b] is defined as

(2.13)
1

b− a

∫ b

a
f(x)dx.

Example 2.18. Compute the average of the function 1
sinx on the interval [π4 ,

π
2 ].

From Example 2.16 we know that∫
dx

sinx
=

1

2
ln

1− cosx

1 + cosx
+ C.

Therefore, the average of 1
sinx equals

1
π
2 −

π
4

∫ π
2

π
4

dx

sinx
=

2

π
ln

1− cosx

1 + cosx

∣∣∣∣π2
π
4

= − 2

π
ln

2−
√

2

2 +
√

2
.

�

Exercises.

2·1 First use a substitution, then integration by parts to evaluate∫
sin(lnx)dx.
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2·2 Evaluate ∫ π

0
ecos t sin 2t dt.

2·3 Evaluate ∫
(cos−1 x)2 dx.

Here cos−1 x = arccosx is the inverse function to cosx. (Hint: Use integration by parts twice.)

2·4 Let

Jn =

∫
dx

(x2 + 1)n
.

(i) Compute J1.
(ii) Use recursive formula (2.6) to calculate J4.

2·5 Find a recursive formula analogous to (2.6) for

Jn =

∫
dx

(x2 + a2)n
.

n = 1, 2, . . . .

2·6 Let f be twice differentiable with f(0) = 6, f(1) = 2, and f ′(1) = 3. Evaluate the integral∫ 1
0 xf

′′(x)dx.

2·7 Evaluate
∫

2t2 cos(t) dt.

2·8 Evaluate ∫
dx√

x2 − 6x+ 13

2·9 Evaluate ∫
dx

ex
√

1− e−2x

2·10 Evaluate ∫
2x4 + 5x2 − 2

2x3 − x− 1
dx

2·11 Write out the form of the partial fraction decomposition of the function

P (t) =
t

(t2 − 1)2(t2 + 1)3

Do not determine the numerical values of the coefficients.

2·12 Evaluate ∫ 3

2

x2 + 2x− 1

x3 − x
dx

2·13 Evaluate ∫
dx

4
√

1 + x4

(Hint: Use a substituion t4 = 1 + x−4)

2·14 Evaluate
∫

arcsin(4w) dw.

2·15 Find the integral
∫

(z + 1) e6zdz.
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2·16 Find the integral
∫
x6 ln(x) dx.

2·17 Find the integral
∫
y 4
√
y + 1 dy .

2·18 Find the integral
∫
x9 sin(x5) dx .

2·19 Find the integral
∫

lnx
x2
dx .

2·20 Use integration by parts to evaluate the definite integral.
∫ e
1 t

2 ln t dt .

2·21 Evaluate the indefinite integral.
∫

ln(x2 + 10x+ 25) dx

2·22 Evaluate
∫

dx
x3+1

2·23 Evaluate

∫
−x2 + 33x+ 19

(x+ 1)(x− 4)(2x+ 1)
dx

2·24 What is the correct form of the partial fraction decomposition for the following integral?∫
x2 + 1

(x− 2)3(x2 + 10x+ 38)
dx

(Do not evaluate the coefficients.)

2·25 Evaluate the integral. ∫ 1

−1

x3 − 3

(x+ 4)(x+ 3)
dx.

2·26 Write out the form of the partial fraction decomposition of the function appearing in the
integral: ∫

−4x− 34

x2 + 3x− 10
dx

Determine the numerical values of the coefficients A and B.

2·27 Evaluate the integral
∫ 5
4

3x−2
x2−2xdx .

2·28 Evaluate the integral.

∫ 6

5

13x− 19

x2 − 2x− 3
dx .

2·29 Make a substitution to express the integrand as a rational function and then evaluate the
integral ∫

1√
x− 3
√
x
dx.

2·30 If f is a quadratic function such that f(0) = 1 and∫
f(x)

x2(x+ 1)3
dx

is a rational function, find the value of f ′(0).

2·31 Use integration by parts and the technique of partial fractions to evaluate the integral∫
ln(x2 − x+ 2) dx.


