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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

1. Mean Value Theorem

1.1. Review: limit, continuity, differentiability. We denote by R the set of real numbers. A
domain D of R is any subset of R. Typically this will be on open interval (a, b) or a closed interval
[a, b]. A function of a real variable is a function f : D → R, where D is a domain of R.

Definition 1.1 (The ε− δ Definition). We say that a function f(x) has a limit L as x approaches
a point x0 and write lim

x→x0
f(x) = L, if for any ε > 0 there exists δ > 0 such that whenever

0 < |x− x0| < δ (and x ∈ D) we have |f(x)− L| < ε.

The meaning of the above definition is that by choosing a sufficiently small interval (x0−δ, x0+δ)
of the point x0 we can ensure that the values of f(x) on this interval (excluding x0) do not deviate
from L by more than ε.

Example 1.1. We will use this definition to prove that limx→0
sinx
x = 1. For this we need to show

that for any ε > 0, there exists a choice of δ > 0 such that∣∣∣∣sinxx − 1

∣∣∣∣ < ε, whenever |x| < δ.

First we recall the following inequality from trigonometry: for 0 < x < π/2,

(1.1) sinx < x < tanx.

If we divide sinx by the three terms in the above inequality we obtain

sinx

sinx
>

sinx

x
>

sinx

tanx
⇒ 1 >

sinx

x
> cosx.

From this we conclude that

0 < 1− sinx

x
< 1− cosx = 2 sin2 x

2
< 2 sin

x

2
< x,

where in the last step we again used inequality (1.1). It follows that∣∣∣∣sinxx − 1

∣∣∣∣ < |x|.
The same inequality holds for x < 0 because sin(−x)

−x = sinx
x . So, given ε > 0, we can take

δ = min{ε, π/2} to satisfy the definition of limit. �

Definition 1.2. We say that a function f : D → R is continuous at a point x0 ∈ D if

(1.2) lim
x→x0

f(x) = f(x0).

Using the ε − δ definition this can be stated as follows: given ε > 0, there exists δ > 0 such that
whenever |x− x0| < δ we have |f(x)− f(x0)| < ε.
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Example 1.2. Let f : R → R be defined as f(x) = x. Let x0 be any real number. Then f(x) is
continuous at x0. Indeed, using the ε − δ definition we have |f(x) − f(x0)| = |x − x0| < ε. This
inequality can be ensured by taking δ = ε. �

Theorem 1.3. If f and g are continuous functions on a domain D, then so are the functions f+g,
f · g, and c · f , where c is any constant. The function f/g is continuous at all points of D where
g 6= 0. Further, if g is a function defined on the range of f , then the function g ◦ f = g(f(x)) is
continuous on D.

Using the above theorem and the fact that f(x) = x is a continuous function as shown in
Example 1.2, we conclude that any polynomial is a continuous function, and any rational function
(the quotient of two polynomials) is continuous at all points where the denominator does not vanish.

Example 1.3. Let f(x) =
√
x. We will use the ε − δ definition to show that this function is

continuous at any point x0 > 0. Observer that

|
√
x−
√
x0| =

(|
√
x−√x0)(

√
x+
√
x0)|√

x+
√
x0

=
|x− x0|√
x+
√
x0

<
|x− x0|√

x0

Now, let ε > 0 be arbitrary. We choose δ = ε
√
x0 (x0 is a fixed number!). Then for |x − x0| < δ,

we have

|
√
x−
√
x0| <

|x− x0|√
x0

<
ε
√
x0√
x0

= ε,

which proves the continuity. �

Example 1.4. Let

f(x) =

{
0, x 6= 0,

1, x = 0.

Then limx→0 f(x) exists and equals zero, but it differs from the value of f at the origin since
f(0) = 1. Therefore, equation (1.2) does not hold, and f(x) is not continuous at the origin.
However, letting f(0) = 0 will make this function continuous everywhere. �

Example 1.5 (Dirichlet’s function). Recall that a rational number is the quotient of two integers.
The set of all rational numbers is denoted by Q. All real numbers that are not rational are called
irrational. They form a set R \Q. Define

d(x) =

{
1, x ∈ Q,
0, x ∈ R \Q.

This function is discontinuous at all points. Indeed, let x0 be any real number, say x0 is rational.
Then for any δ > 0, the interval (x0 − δ, x0 + δ) necessarily contains an irrational number x, and
then, |d(x)− d(x0)| = 1. Thus, for ε < 1, no choice of δ will satisfy the condition of Definition 1.2.
A similar argument will work if x0 is irrational. �

Example 1.6. Let

(1.3) f(x) =

{
sin 1

x , x 6= 0,

0, x = 0.

The function f (see Fig. 1) is defined for all x. It is continuous for all x 6= 0 because it is a
composition of a continuous functions 1/x and sinx. But f(x) does not have a limit as x → 0
(why?), and therefore f(x) is not continuous at the origin. Note that there is no choice of f(0)
that will make this function continuous at the origin. �
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Figure 1. The graph of sin 1
x

Figure 2. The graph of x sin 1
x

Example 1.7. Let

f(x) =

{
x sin 1

x , x 6= 0

0, x = 0
.

This function (see Fig. 2) is continuous everywhere. To prove the continuity at the origin, let us
verify the ε− δ definition. We have

|f(x)− f(0)| =
∣∣∣∣x sin

1

x

∣∣∣∣ < ε.

Since |x sin 1
x | < |x| for all x 6= 0, we have

|f(x)− f(0)| =
∣∣∣∣x sin

1

x

∣∣∣∣ ≤ |x| < ε,

and so we may take δ = ε. Intuitively, lim
x→0

x sin
1

x
= 0 because sin 1

x is bounded between −1 and 1,

whereas x approaches zero. �
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Figure 3. The graph of x2 sin 1
x

Definition 1.4. Let f(x) be defined on an interval D ⊂ R. Let x0 ∈ D. We say that f(x) is
differentiable at x0 if the limit

(1.4) lim
h→0

f(x0 + h)− f(x0)

h

exists. The value of the limit is defined to be f ′(x0), the derivative of f at x0.

Example 1.8. Let us apply the above definition to the function f(x) = x2. The expression under
the limit in equation (1.4) becomes

(x0 + h)2 − x20
h

=
x20 + 2x0h+ h2 − x20

h
= 2x0 + h.

Clearly, the limit of the above expression equals 2x0, as h→ 0. Thus, we proved that f(x) = x2 is
differentiable at every point, and (x2)′ = 2x. �
Example 1.9. Let

f(x) =

{
x sin 1

x , x 6= 0

0, x = 0
.

This function is continuous but not differentiable at the origin. The continuity was shown in
Example 1.7. As for nondifferentiability, we have

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h sin 1
h

h
= lim

h→0
sin

1

h
,

which does not exist. �
Example 1.10. Let

f(x) =

{
x2 sin 1

x , x 6= 0

0, x = 0
.

This function (see Fig. 3) is continuous everywhere because it is the product of continuous
functions x and x sin 1/x (as discussed in Example 1.7). To prove differentiability of this function
at the origin let us compute the corresponding limit in (1.4).

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h2 sin 1
h

h
= lim

h→0
h sin

1

h
.
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As we saw in Example 1.7 this limit equals 0. Thus f ′(0) = 0. �

1.2. Mean Value Theorem.

Definition 1.5. Suppose f(x) is a function defined on a domain D. The function f(x) is said to
have an absolute (global) maximum at a point c ∈ D, if f(c) ≥ f(x) for all x ∈ D. The number
f(c) is called the absolute (global) maximum value of f on the domain D. The function f has an
absolute (global) minimum at c ∈ D, if f(c) ≤ f(x) for all x ∈ D. The number f(c) is called the
absolute (global) minimum value of f on the domain D.

Example 1.11. Consider a constant function f(x) = c, for some c ∈ R. Then every point x is a
global maximum and minimum of f(x). On the other hand, the function f(x) = x3 for x ∈ R does
not attain a global maximum or minimum. The same is true if we consider this function on any
open interval (a, b).

Theorem 1.6. If f(x) is continuous on a closed interval [a, b], then f(x) attains a maximum and
a minimum value.

The above theorem can be proved using the Axiom of Completeness for real numbers which will
be stated when we discuss sequences.

Definition 1.7. A function f defined on a domain D has a local maximum at a point c ∈ D, if
there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≥ f(x) for all x ∈ I. A function f has
a local minimum at c ∈ D, if there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≤ f(x) for
all x ∈ I.

Maxima and minima are called extreme points, or extrema.

Lemma 1.8. Let f(x) be a differentiable function on an interval (a, b). Suppose x0 ∈ (a, b). If
f ′(x0) > 0, then for x < x0 close to x0 we have f(x) < f(x0), and f(x) > f(x0) for x > x0 and
close to x0.

The lemma above simply states that if f ′(x0) > 0, then f(x) is an increasing function near x0.
A similar statement holds if we assume that f ′(x0) < 0 (see Exercise 1.10).

Proof. By definition,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

If f ′(x0) > 0, then there exists a small interval (x0 − δ, x0 + δ) such that

f(x)− f(x0)

x− x0
> 0, for x 6= x0.

Suppose first that x0 < x < x0 + δ. Then x − x0 > 0, and from the above inequality we conclude
that f(x) − f(x0) > 0, or f(x) > f(x0). Now, if x0 − δ < x < x0, then x − x0 < 0, and the same
inequality shows that f(x) < f(x0). �

Theorem 1.9 (Fermat’s Theorem). 1 Let f(x) be defined on an interval [a, b], and suppose that
f(x) attains a maximal (or minimal) value at a point c ∈ (a, b). If f(x) is differentiable at x = c,
then f ′(c) = 0.

1This is a modern formulation of the theorem. It captures the essence of Fermat’s method for finding maximal
and minimal values of a function. The notion of derivative was not yet developed at Fermat’s time.
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Proof. We will assume that c is a maximum of f(x), the case when c is a minimum can be treated
in a similar way. Arguing by contradiction, suppose that f ′(c) 6= 0. Then either f ′(c) > 0 or
f ′(c) < 0. If f ′(c) > 0, then Lemma 1.8 implies that f(x) > f(c) for x > c with x sufficiently close
to c. Similarly, if f ′(c) < 0, then f(x) > f(c) for x < c. In both cases we see that f(c) cannot be
the maximum value of the function f . This contradiction proves the theorem. �

Geometrically, Fermat’s theorem states that at extreme points the tangent line to the graph of
the function f is horizontal, which should be intuitively clear. Also note, that if a maximal or a
minimum value is attained at the end point of the interval [a, b], then Fermat’s theorem need not
to hold.

Definition 1.10. A point c is called a critical point of a differentiable function f(x) if f ′(c) = 0.

Fermat’s theorem now can be stated as follows: if c is a local maximum or minimum of a function
f(x), then c is a critical point of f . The converse to this statement is false: if f ′(c) = 0, then it
does not follow in general that c is a local maximum or a local minimum of f(x). For example, if
f(x) = x3, then f ′(0) = 0, but the origin is not an extreme point of x3.

Theorem 1.11 (Rolle’s Theorem). 2 Suppose f(x) is continuous on the interval [a, b], differentiable
on (a, b), and f(a) = f(b). Then there exists a number c ∈ (a, b) such that f ′(c) = 0.

Proof. By Theorem 1.6, a continuous function on a closed interval [a, b] attains its maximum value,
say, M , and its minimum value, say, m. Consider two cases:

1. Suppose M = m. Then f(x) on [a, b] is a constant function, since m ≤ f(x) ≤M = m for all
x ∈ [a, b]. Therefore, f ′(x) = 0 for all x.

2. Suppose M > m. Since f(a) = f(b), we know that either M or m is attained at some point
c inside the interval (a, b), (i.e., not at the end points of the interval). In this case, it follows from
Fermat’s theorem that f ′(c) must be zero. �

Geometrically, Rolle’s theorem states that if f(a) = f(b), then there is a point c between a and
b such that the tangent line to the graph of f at point c is horizontal. This occurs at a local
maximum or a local minimum of f(x).

Theorem 1.12 (Mean Value Theorem). Suppose that f(x) is continuous on [a, b] and differentiable
on (a, b). Then there exists a point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Proof. Define an auxiliary function

F (x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

This function satisfies the conditions of Rolle’s theorem. Indeed, it is continuous on [a, b], because
it is a difference of a continuous function f(x) and a linear (hence continuous!) function

f(a)− f(b)− f(a)

b− a
(x− a).

On the interval (a, b), we have

F ′(x) = f ′(x)− f(b)− f(a)

b− a
.

2Despite the name, Michel Rolle only suggested this result for polynomials in 1691.
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Finally, F (a) = f(a)− f(a) = 0, and F (b) = f(b)− f(a)− f(b)−f(a)
b−a (b− a) = f(b)− f(a)− (f(b)−

f(a)) = 0, and so F (a) = F (b).
Therefore, we may apply Rolle’s theorem to the function F (x), and so there exists a point

c ∈ (a, b) such that F ′(c) = 0. This means that

f ′(c)− f(b)− f(a)

b− a
= 0.

Hence,

f ′(c) =
f(b)− f(a)

b− a
,

which is exactly what we wanted to prove. �

Using the Mean Value Theorem we can now prove that only constant functions have everywhere
vanishing derivatives.

Corollary 1.13. Suppose f(x) is a differentiable functions such that f ′(x) = 0 for all x. Then
f(x) is a constant function.

Proof. Choose any two points a and b in the domain of f(x), say, a < b. By the Mean Value
Theorem, there exists a point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c) = 0.

It follows then that f(b) = f(a). But this means that f(x) is a constant function. �

1.3. Proving inequalities. The Mean Value Theorem can be used for proving inequalities.

Example 1.12. Prove that if x > 0, then

ln(1 + x) < x.

Solution. Let a = 0, b = x, and f(x) = ln(1 + x) − x. Then f ′(x) = 1
1+x − 1 = − x

1+x . By the

Mean Value Theorem applied to the function f on the interval [a, b] = [0, x], there exists a point
c ∈ (0, x) such that

f ′(c) =
f(x)− f(0)

x− 0
,

or

(1.5) − c

1 + c
=

ln(1 + x)− x
x

.

Note that c > 0, and therefore, − c
1+c < 0. Therefore, equation (1.5) implies

ln(1 + x)− x
x

< 0.

Since x > 0, the numerator in the above inequality must be negative, i.e.,

ln(1 + x)− x < 0,

which is what we had to prove. �
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Example 1.13. Prove that if x > 0, and n > 1, then

(1 + x)n > 1 + nx.

Solution. Let a = 0, and b = x, and f(x) = (1 + x)n − (1 + nx). Then f ′(x) = n(1 + x)n−1 − n,
and by the Mean Value Theorem, we have

(1.6) n(1 + c)n−1 − n =
(1 + x)n − (1 + nx)− 0

x

for some c ∈ (0, x). Note that 1 + c > 1, and for n > 1, we have (1 + c)n−1 > 1. Therefore,

n(1 + c)n−1 − n > 0.

From this and equation (1.6) we conclude that

(1 + x)n − (1 + nx)

x
> 0.

Since x > 0, this yields the desired inequality. �

Exercises

1·1. Use a similar strategy as in Example 1.3 to show that the following functions are continuous
on the specified domain:
(a) f(x) = 2x+ 1, for x0 ∈ R,
(b) f(x) = x2, for x0 ∈ R,
(c) f(x) = 1/x for x0 6= 0.

1·2. Prove, using the definition, that the function f(x) = x3 is differentiable at all points.
1·3. Prove, using the definition, that the function

g(x) =

{
0, if x ≤ 0,

x, if x > 0,

is continuous at the origin but not differentiable there.
1·4. Determine the set of all points where the function

f(x) =

{
2x2+1
x+1 , if x < 0,

x+ 1, if x ≥ 0

is continuous.
1·5. Negate the ε− δ definition of the limit to write what it means that a function f(x) defined

for x 6= 0 does not have a limit as x approaches the origin. Use this to prove that the
function

f(x) =

{
1, x > 0,

0, x < 0.

does not have a limit at zero.
1·6. Show that the function given by (1.3) is not continuous at the origin.
1·7. Determine differentiability at the origin of the function

g(x) =

{
0, if x ≤ 0,

x2, if x > 0.
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1·8. The function

F (x) =

{
e1/x, if x < 0,

x cos 1
x , if x > 0

is not defined at the origin. Give the value F (0) so that the newly defined function becomes
continuous at the origin.

1·9. Show that the function in Example 1.10 does not have the second order derivative at x = 0.
1·10. Formulate and prove a statement similar to Lemma 1.8 for the case when f ′(x0) < 0.
1·11. Give an example of a function which is defined on the closed interval [0, 1] but is not

bounded there.
1·12. Give an example of a function which is continuous on the interval (−∞, 0] but does not

attain a global maximum and a global minimum.
1·13. Prove that if a polynomial p(x) vanishes at two points a and b, then there exists a point c

between a and b such that p′(c) = 0.
1·14. Prove that if a polynomial p(x) of degree 3 has 3 pairwise different (real) roots, then p′(x)

has exactly two (real) roots.
1·15. On the interval (0, 1) find a point c such that the tangent line to the graph of the function

y = x3 at the point (c, c3) is parallel to the straight line passing through the points (0, 0)
and (1, 1).

1·16. Prove that if a nonconstant function f(x) satisfies the conditions of Rolle’s theorem on the
interval [a, b], then there exist points x1 and x2 on the interval (a, b) such that f ′(x1) < 0
and f ′(x2) > 0.

1·17. Prove that if f(x) is a 3 times differentiable function on x ≥ 0, and f(0) = f ′(0) = f ′′(0) =
0, and f ′′′(x) > 0 for x > 0, then also f(x) > 0 for x > 0.

1·18. (Cauchy’s Theorem) If the functions x = φ(t) and y = ψ(t) are continuous on the interval
[a, b] and differentiable on (a, b) with φ′(t) 6= 0 for a < t < b, then there exists a point
ξ ∈ (a, b) such that

(1.7)
ψ(b)− ψ(a)

φ(b)− φ(a)
=
ψ′(ξ)

φ′(ξ)
.

Hint: Consider an auxiliary function h(x) = (ψ(b)− ψ(a))φ(x)− (φ(b)− φ(a))ψ(x).
1·19. Suppose that f(x) is a continuous function on [0,∞), differentiable on (0,∞), f(0) = 0, and

f ′(x) is an increasing function for x > 0. Prove that the function
f(x)

x
is also increasing

for x > 0.
1·20. Use the graph of the function G(x) below to estimate the value of c that satisfies the

conclusion of the Mean Value Theorem for the function G(x) on the interval [0, 2].
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In the next problems prove the given inequality using the Mean Value Theorem.

1·21. 2
√
x > 3− 1

x
, for x > 1.

1·22. sinx < x, for x > 0.

1·23. cosx > 1− x2

2
, for x > 0.

1·24. sinx > x− x3

6
, for x > 0.

1·25. tanx > x, for 0 < x < π
2 .

1·26. ex > 1 + x, for x > 0.

1·27. ex > 1 + x+
x2

2
, for x > 0.

1·28. ex > 1 + x+
x2

2
+ · · ·+ xn

n!
, for x > 0. (Hint: use the mathematical induction)


