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1. MEAN VALUE THEOREM

1.1. Review: limit, continuity, differentiability. We denote by R the set of real numbers. A
domain D of R is any subset of R. Typically this will be on open interval (a, b) or a closed interval
[a,b]. A function of a real variable is a function f: D — R, where D is a domain of R.

Definition 1.1 (The € — ¢ Definition). We say that a function f(x) has a limit L as x approaches
a point xo and write lim f(x) = L, if for any € > 0 there exists § > 0 such that whenever
T—xQ

0<|x—x0] <8 (and x € D) we have |f(x) — L| < e.

The meaning of the above definition is that by choosing a sufficiently small interval (zo—d, xo+9)
of the point zy we can ensure that the values of f(x) on this interval (excluding xy) do not deviate
from L by more than e.

sin x

Example 1.1. We will use this definition to prove that lim,_,q #7% = 1. For this we need to show

that for any € > 0, there exists a choice of § > 0 such that

sin x

X

- 1‘ < ¢, whenever |z| <.

First we recall the following inequality from trigonometry: for 0 < z < /2,
(1.1) sinx <z < tanz.

If we divide sinx by the three terms in the above inequality we obtain

sinx sinx sinzx sinx
> > 1> > Ccos .

sinx T tanx
From this we conclude that

sinx . 9 .z
<1l—cosz=2sin?Z < 2sin= <z,
T 2 2

where in the last step we again used inequality (1.1). It follows that

0<1-

sin x

— 1‘ < |x|.

The same inequality holds for z < 0 because Sinffx) = $1Z Q5 given ¢ > 0, we can take

x x
0 = min{e, 7/2} to satisfy the definition of limit. ¢

Definition 1.2. We say that a function f: D — R is continuous at a point xg € D if
(1.2) lim f(z) = f(xo).

Tr—xQ
Using the € — § definition this can be stated as follows: given € > 0, there exists 6 > 0 such that
whenever |x — xg| < § we have |f(x) — f(xo)| < €.
1
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Example 1.2. Let f: R — R be defined as f(z) = x. Let xy be any real number. Then f(z) is
continuous at zo. Indeed, using the € — § definition we have |f(z) — f(xo)| = | — xo| < e. This
inequality can be ensured by taking § = €. ©

Theorem 1.3. If f and g are continuous functions on a domain D, then so are the functions f+g,
f-g, and c- f, where c is any constant. The function f/g is continuous at all points of D where
g # 0. Further, if g is a function defined on the range of f, then the function go f = g(f(z)) is
continuous on D.

Using the above theorem and the fact that f(z) = x is a continuous function as shown in
Example 1.2, we conclude that any polynomial is a continuous function, and any rational function
(the quotient of two polynomials) is continuous at all points where the denominator does not vanish.

Example 1.3. Let f(z) = /. We will use the ¢ — ¢ definition to show that this function is
continuous at any point xg > 0. Observer that
Vi i - VB VAW R fr—so| o=
\/E—i- A/ o \/E—i- \/To \/To
Now, let € > 0 be arbitrary. We choose 6 = €,/xg (z¢ is a fixed number!). Then for |z — z¢| < 9,

we have
|z — x| - €y/To .

NI

[V — /@] <
which proves the continuity. ¢

Example 1.4. Let

_J0, =z #0,
f(x)_{L z=0.

Then lim,_,o f(z) exists and equals zero, but it differs from the value of f at the origin since
f(0) = 1. Therefore, equation (1.2) does not hold, and f(z) is not continuous at the origin.
However, letting f(0) = 0 will make this function continuous everywhere. ¢

Example 1.5 (Dirichlet’s function). Recall that a rational number is the quotient of two integers.
The set of all rational numbers is denoted by Q. All real numbers that are not rational are called
irrational. They form a set R\ Q. Define

o 1a me@7
dz) = {o, z R\ Q.

This function is discontinuous at all points. Indeed, let xy be any real number, say xg is rational.
Then for any § > 0, the interval (zg — J, 29 + J) necessarily contains an irrational number z, and
then, |d(z) — d(zg)| = 1. Thus, for € < 1, no choice of ¢ will satisfy the condition of Definition 1.2.
A similar argument will work if xg is irrational. ¢

Example 1.6. Let

(1.3) fz) =

sin%, x #0,
0, xz=0.

The function f (see Fig. 1) is defined for all z. It is continuous for all  # 0 because it is a
composition of a continuous functions 1/z and sinz. But f(z) does not have a limit as x — 0
(why?), and therefore f(z) is not continuous at the origin. Note that there is no choice of f(0)
that will make this function continuous at the origin. ¢
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FIGURE 1. The graph of sin%
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FIGURE 2. The graph of 9csin%

Example 1.7. Let

0, z=0

This function (see Fig. 2) is continuous everywhere. To prove the continuity at the origin, let us
verify the € — ¢ definition. We have

f(x):{:ESini’ z#0

1
|f(z) — f(0)] = xsinJU’ < e.
Since |z sin %\ < |z| for all z # 0, we have
1
) = 10 = [osin | <ol <

1
and so we may take § = e. Intuitively, liH(l) zsin — = 0 because sin% is bounded between —1 and 1,
r— T

whereas x approaches zero. ¢
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FIGURE 3. The graph of x?sin

Definition 1.4. Let f(z) be defined on an interval D C R. Let xg € D. We say that f(zx) is
differentiable at xq if the limit

h) —
(1.4) i (%0 + 1) — f(ao)
h—0 h

exists. The value of the limit is defined to be f'(xq), the derivative of f at xg.
Example 1.8. Let us apply the above definition to the function f(z) = x?. The expression under
the limit in equation (1.4) becomes

(xo+h)* —ad  af+ 2z0h+ h? — x}

h N h

Clearly, the limit of the above expression equals 2x¢, as h — 0. Thus, we proved that f(z) =z
differentiable at every point, and (z2)’ = 2z. ©

Example 1.9. Let
rsini,  z#0
o= fr

= 2xg + h.

2 is

0, z=0
This function is continuous but not differentiable at the origin. The continuity was shown in
Example 1.7. As for nondifferentiability, we have

i 7OFR = FO) o _ lim sin =,
h—0 h h—0 h h—0 h

1
hsmﬁ

which does not exist. ¢

Example 1.10. Let

x2sin%, x#0
s

This function (see Fig. 3) is continuous everywhere because it is the product of continuous
functions = and zsin1/z (as discussed in Example 1.7). To prove differentiability of this function
at the origin let us compute the corresponding limit in (1.4).

fO+R) = £(0) _ o h?sing

1
lim = lim ——2 = lim Asin —.
h—0 h h—0 h h—0
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As we saw in Example 1.7 this limit equals 0. Thus f'(0) = 0. ¢
1.2. Mean Value Theorem.

Definition 1.5. Suppose f(x) is a function defined on a domain D. The function f(x) is said to
have an absolute (global) maximum at a point ¢ € D, if f(c) > f(z) for all x € D. The number
f(c) is called the absolute (global) maximum value of f on the domain D. The function f has an
absolute (global) minimum at ¢ € D, if f(c) < f(x) for all x € D. The number f(c) is called the
absolute (global) minimum value of f on the domain D.

Example 1.11. Consider a constant function f(z) = ¢, for some ¢ € R. Then every point z is a
global maximum and minimum of f(x). On the other hand, the function f(z) = 23 for z € R does
not attain a global maximum or minimum. The same is true if we consider this function on any
open interval (a,b).

Theorem 1.6. If f(x) is continuous on a closed interval [a,b], then f(x) attains a mazimum and
a minimum value.

The above theorem can be proved using the Axiom of Completeness for real numbers which will
be stated when we discuss sequences.

Definition 1.7. A function f defined on a domain D has a local mazimum at a point ¢ € D, if
there is an open interval I C D, such that ¢ € I, and f(c) > f(x) for allz € I. A function f has
a local minimum at ¢ € D, if there is an open interval I C D, such that ¢ € I, and f(c) < f(x) for
allx € I.

Maxima and minima are called extreme points, or extrema.

Lemma 1.8. Let f(x) be a differentiable function on an interval (a,b). Suppose zo € (a,b). If
f(xo) > 0, then for x < xo close to xy we have f(x) < f(xo), and f(x) > f(xo) for x > xy and
close to xg.

The lemma above simply states that if f/(zg) > 0, then f(z) is an increasing function near z.
A similar statement holds if we assume that f'(x¢) < 0 (see Exercise 1.10).

Proof. By definition,

o @) = o)
fiwo) = lim =——"
If f'(zg) > 0, then there exists a small interval (zg — d, ¢ + d) such that
f(x) = f(xo)

>0, for z # xo.

T — X0
Suppose first that zog < < g + . Then x — xg > 0, and from the above inequality we conclude
that f(x) — f(xo) > 0, or f(z) > f(xo). Now, if xg — 9§ < & < x¢, then z — x9 < 0, and the same
inequality shows that f(z) < f(z). O

Theorem 1.9 (Fermat’s Theorem). ! Let f(z) be defined on an interval [a,b], and suppose that
f(z) attains a maximal (or minimal) value at a point ¢ € (a,b). If f(x) is differentiable at x = c,
then f'(c) = 0.

IThis is a modern formulation of the theorem. It captures the essence of Fermat’s method for finding maximal
and minimal values of a function. The notion of derivative was not yet developed at Fermat’s time.
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Proof. We will assume that ¢ is a maximum of f(x), the case when ¢ is a minimum can be treated
in a similar way. Arguing by contradiction, suppose that f’(¢) # 0. Then either f'(¢) > 0 or
() <0. If f'(¢) > 0, then Lemma 1.8 implies that f(z) > f(c) for z > ¢ with z sufficiently close
to c. Similarly, if f/(¢) <0, then f(z) > f(c) for < c. In both cases we see that f(c) cannot be
the maximum value of the function f. This contradiction proves the theorem. O

Geometrically, Fermat’s theorem states that at extreme points the tangent line to the graph of
the function f is horizontal, which should be intuitively clear. Also note, that if a maximal or a
minimum value is attained at the end point of the interval [a, b], then Fermat’s theorem need not
to hold.

Definition 1.10. A point ¢ is called a critical point of a differentiable function f(x) if f'(c) = 0.

Fermat’s theorem now can be stated as follows: if ¢ is a local maximum or minimum of a function
f(z), then ¢ is a critical point of f. The converse to this statement is false: if f’(¢) = 0, then it
does not follow in general that ¢ is a local maximum or a local minimum of f(z). For example, if
f(x) = 23, then f(0) = 0, but the origin is not an extreme point of z3.

Theorem 1.11 (Rolle’s Theorem). 2 Suppose f(x) is continuous on the interval [a, ], differentiable
n (a,b), and f(a) = f(b). Then there exists a number ¢ € (a,b) such that f'(c) = 0.

Proof. By Theorem 1.6, a continuous function on a closed interval [a, b] attains its maximum value,
say, M, and its minimum value, say, m. Consider two cases:

1. Suppose M = m. Then f(z) on [a,b] is a constant function, since m < f(z) < M = m for all
x € [a,b]. Therefore, f'(x) =0 for all .

2. Suppose M > m. Since f(a) = f(b), we know that either M or m is attained at some point
¢ inside the interval (a,b), (i.e., not at the end points of the interval). In this case, it follows from
Fermat’s theorem that f’(c) must be zero. O

Geometrically, Rolle’s theorem states that if f(a) = f(b), then there is a point ¢ between a and
b such that the tangent line to the graph of f at point ¢ is horizontal. This occurs at a local
maximum or a local minimum of f(z).

Theorem 1.12 (Mean Value Theorem). Suppose that f(z) is continuous on [a,b] and differentiable
on (a,b). Then there exists a point ¢ € (a,b) such that

Proof. Define an auxiliary function
F) = f(@) - fla) - OO0y

This function satisfies the conditions of Rolle’s theorem. Indeed, it is continuous on |a, b], because
it is a difference of a continuous function f(z) and a linear (hence continuous!) function

Sl - =T )

On the interval (a,b), we have

Jb) = f(a)

Fl(a) = f'(e) - 20—

2Despite the name, Michel Rolle only suggested this result for polynomials in 1691.
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Finally, F(a) = f(a) ~ f(a) = 0, and F(b) = f(b) — f(a) = TG=LD (b —a) = £(b) = f(a) — (F(b) -
f(a)) =0, and so F(a) = F(b).
Therefore, we may apply Rolle’s theorem to the function F'(x), and so there exists a point
¢ € (a,b) such that F'(c) = 0. This means that

/ f(b) — f(a)
— =0.
7o - 292
Hence,
/ f(b) — f(a)
f (C) - b —a )
which is exactly what we wanted to prove. g

Using the Mean Value Theorem we can now prove that only constant functions have everywhere
vanishing derivatives.

Corollary 1.13. Suppose f(x) is a differentiable functions such that f'(x) = 0 for all z. Then
f(z) is a constant function.

Proof. Choose any two points a and b in the domain of f(x), say, a < b. By the Mean Value
Theorem, there exists a point ¢ € (a,b) such that

VRS (R

It follows then that f(b) = f(a). But this means that f(z) is a constant function. O

1.3. Proving inequalities. The Mean Value Theorem can be used for proving inequalities.

Example 1.12. Prove that if x > 0, then

In(1+2) < .
Solution. Let a = 0, b = z, and f(z) = In(1 + 2) — 2. Then f'(z) = 14—% — 1= —¢f;. By the
Mean Value Theorem applied to the function f on the interval [a,b] = [0, z], there exists a point
¢ € (0,z) such that
iy @) = f(0)

f (C) - T — 0 ’
or
(15) c In(1+ x) —z

“1+c x
Note that ¢ > 0, and therefore, —ﬁ < 0. Therefore, equation (1.5) implies

In(l+z)—=
x

< 0.
Since x > 0, the numerator in the above inequality must be negative, i.e.,
In(l+z)—z <0,

which is what we had to prove. ¢
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Example 1.13. Prove that if x > 0, and n > 1, then

(14+2)" > 1+ nx.

Solution. Let a = 0, and b = x, and f(z) = (1 + )" — (1 + nz). Then f'(x) = n(1 +z)""! —n,
and by the Mean Value Theorem, we have
(1+2)"—1+nx)—0

x

for some ¢ € (0, 7). Note that 14 ¢ > 1, and for n > 1, we have (1 + ¢)"~! > 1. Therefore,

(1.6) n(l+e)" 1 —n=

n(l+¢e)" 1 —n>0.
From this and equation (1.6) we conclude that

(I1+2)" = (14 nx)

> 0.

Since x > 0, this yields the desired inequality. ©

Exercises

1-1. Use a similar strategy as in Example 1.3 to show that the following functions are continuous
on the specified domain:
(a) f(z) =2z +1, for zp € R,
(b) f(z) = 22, for zg € R,
(¢) f(x) =1/z for g # 0.
1-2. Prove, using the definition, that the function f(x) = 3 is differentiable at all points.
1-3. Prove, using the definition, that the function

(z) = 0, if x <0,
9o = x, if £ >0,

is continuous at the origin but not differentiable there.
1-4. Determine the set of all points where the function

22241
fla) = §+1 ,.1fa:<07
z+1,ifz>0

is continuous.
1-5. Negate the € — § definition of the limit to write what it means that a function f(x) defined
for x # 0 does not have a limit as = approaches the origin. Use this to prove that the

function
1, x>0,
fz) = {0, 2 <0.

does not have a limit at zero.
1-6. Show that the function given by (1.3) is not continuous at the origin.
1-7. Determine differentiability at the origin of the function

(z) = 0, if <0,
9= 22, if © > 0.
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1-8. The function

Pla) = er ifx <0,
B a:cos%, ifz>0

is not defined at the origin. Give the value F'(0) so that the newly defined function becomes
continuous at the origin.
1-9. Show that the function in Example 1.10 does not have the second order derivative at © = 0.
1-10. Formulate and prove a statement similar to Lemma 1.8 for the case when f'(zg) < 0.
1-11. Give an example of a function which is defined on the closed interval [0,1] but is not
bounded there.

1-12. Give an example of a function which is continuous on the interval (—oo, 0] but does not
attain a global maximum and a global minimum.

1-13. Prove that if a polynomial p(z) vanishes at two points a and b, then there exists a point ¢
between a and b such that p’(¢) = 0.

1-14. Prove that if a polynomial p(z) of degree 3 has 3 pairwise different (real) roots, then p'(z)
has exactly two (real) roots.

1-15. On the interval (0,1) find a point ¢ such that the tangent line to the graph of the function
y = 23 at the point (c, c®) is parallel to the straight line passing through the points (0,0)
and (1,1).

1-16. Prove that if a nonconstant function f(z) satisfies the conditions of Rolle’s theorem on the
interval [a, b], then there exist points x; and x9 on the interval (a,b) such that f/'(z1) <0
and f’(zg) > 0.

1-17. Prove that if f(x) is a 3 times differentiable function on 2 > 0, and f(0) = f/(0) = f”(0) =
0, and f”'(x) > 0 for x > 0, then also f(z) > 0 for x > 0.

1-18. (Cauchy’s Theorem) If the functions x = ¢(t) and y = 1 (¢) are continuous on the interval
[a,b] and differentiable on (a,b) with ¢'(t) # 0 for a < t < b, then there exists a point
¢ € (a,b) such that

(1.7)

Hint: Consider an auxiliary function h(z) = (1(b) — 1(a))p(x) — (6(b) — ¢(a))(z).
1-19. Suppose that f(x) is a continuous function on [0, co), differentiable on (0, o00), f(0) = 0, and

f(z)

f'(z) is an increasing function for > 0. Prove that the function I s also increasing
T

for x > 0.
1-20. Use the graph of the function G(z) below to estimate the value of ¢ that satisfies the

conclusion of the Mean Value Theorem for the function G(z) on the interval [0, 2].
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1-21.

1-22.

1-23.

1.24.

1-25.
1-26.

1.27.

1.28.
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In the next problems prove the given inequality using the Mean Value Theorem.

1
2y/x>3——, forx>1.
x

sinx < x, forxz >0.

2
cosx>1—?, for x > 0.

23
sin:z:>x—€, for x > 0.

tanz >z, for 0 <z < 3.

e* >1+x, forax>0.
2

ex>1+x+%, for x > 0.

2 n

x
e*>1+r+—+-+—,
2 n!

for © > 0. (Hint: use the mathematical induction)



