CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

5. Series

5.1. Basic Definitions. Given a sequence of real numbers

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

a formal expression

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n} \tag{5.1}
\end{equation*}
$$

is called an infinite series, or just a series. We can add finitely many terms of the series to obtain

$$
\begin{aligned}
A_{1}= & a_{1} \\
A_{2}= & a_{1}+a_{2} \\
A_{3}= & a_{1}+a_{2}+a_{3} \\
& \cdots \\
A_{n}= & a_{1}+a_{2}+a_{3}+\cdots+a_{n}
\end{aligned}
$$

The numbers $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ are called the partial sums of the series (5.1). They naturally form a sequence $\left\{A_{n}\right\}$ of partial sums. If $A=\lim _{n \rightarrow \infty} A_{n}$, and A is a finite number, then the series $\sum a_{n}$ is called convergent, A is called its sum, and we write

$$
A=\sum_{n=1}^{\infty} a_{n}
$$

If the sequence $\left\{A_{n}\right\}$ is divergent (i.e., A is infinite or does not exist), then the series (5.1) is also called divergent.
Example 5.1. Perhaps the simplest example of an infinite series is the so-called geometric series

$$
a+a q+a q^{2}+\cdots+a q^{n}+\cdots=\sum_{n=0}^{\infty} a q^{n-1}, \quad a \neq 0
$$

Its partial sum for $q \neq 1$ equals

$$
\begin{equation*}
A_{n}=\frac{a-a q^{n}}{1-q} . \tag{5.2}
\end{equation*}
$$

Indeed, by direct computation we obtain

$$
A_{n}-q A_{n}=\left(a+a q+\cdots+a q^{n-1}\right)-q\left(a+a q+\cdots+a q^{n-1}\right)=a-a q^{n}
$$

from which equation (5.2) immediately follows.

By taking the limit in (5.2), we see that if $|q|<1$ then the geometric series converges with the sum equal to $\frac{a}{1-q}$. If $|q| \geq 1$, then the series diverges. In particular, if $q=1$, then $\lim A_{n}$ is either ∞ or $-\infty$, depending on the sign of a, and if $q=-1$, then the series takes the form

$$
a-a+a-a+\ldots
$$

and the value of partial sums alternates between a and 0 . To summarize, the geometric series converges if $|q|<1$, and

$$
a+a q+a q^{2}+\cdots+a q^{n}+\cdots=\sum_{n=0}^{\infty} a q^{n-1}=\frac{a}{1-q} .
$$

\diamond
Example 5.2. Consider the series

$$
\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}=\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{1}{4}+\cdots
$$

This series resembles the geometric series, and we can try to find its sum using a similar technique. Let S_{n} be a partial sum of the first n terms. Then

$$
\begin{gathered}
S_{n}-\frac{1}{2} S_{n}=\left(\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}\right)-\left(\frac{1}{2^{2}}+\frac{2}{2^{3}}+\frac{3}{2^{4}}+\cdots+\frac{n}{2^{n+1}}\right) \\
=\frac{1}{2}+\frac{2-1}{2^{2}}+\frac{3-2}{2^{3}}+\cdots+\frac{n-(n-1)}{2^{n}}-\frac{n}{2^{n+1}}=\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}\right)-\frac{n}{2^{n+1}}
\end{gathered}
$$

The term in parentheses on the right-hand side of the above identity is the geometric series with $a=1 / 2$ and $q=1 / 2$, its partial sum was computed in the previous example:

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}=\frac{1 / 2-1 / 2(1 / 2)^{n}}{1-1 / 2}=1-(1 / 2)^{n}
$$

From this we conclude that

$$
\begin{equation*}
S_{n}=\frac{1-(1 / 2)^{n}-n / 2^{n+1}}{1 / 2}=2-\frac{1}{2^{n-1}}-\frac{n}{2^{n}} \tag{5.3}
\end{equation*}
$$

It follows that S_{n} converges to 2 as $n \rightarrow \infty$. Thus,

$$
\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}=2
$$

\diamond
Example 5.3. Determine the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} .
$$

We estimate its partial sum:

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>n \cdot \frac{1}{\sqrt{n}}=\sqrt{n}
$$

We see that the partial sums grow indefinitely as n goes to infinity. Thus this series diverges. \diamond

Let $\sum_{n=1}^{\infty} a_{n}$ be a series, and $A_{m}=\sum_{n=1}^{m} a_{n}$ be the partial sum. The quantity

$$
\begin{equation*}
R_{m}=\sum_{n=1}^{\infty} a_{n}-A_{m}=\sum_{n=m+1}^{\infty} a_{n} \tag{5.4}
\end{equation*}
$$

is called the remainder of the series. We first observe that the series $\sum a_{n}$ converges if and only if the remainder R_{m} converges (as a series). Therefore, we may remove any finite (possibly very large!) number of elements from the series without affecting its convergence (or divergence). Further, if the series $\sum a_{n}$ converges, then by taking limit in (5.4) as $m \rightarrow \infty$ we see that $R_{m} \rightarrow 0$.

The next theorem gives a simple test to verify divergence of certain series.
Theorem 5.1. If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. Let $A_{n}=a_{1}+\cdots+a_{n}$. Then, since the series $\sum a_{n}$ converges, $\lim A_{n}$ exists as $n \rightarrow \infty$. Hence, $a_{n}=A_{n}-A_{n-1}$, and so $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(A_{n}-A_{n-1}\right)=0$.

The contrapositive formulation of this theorem is sometimes called the Test for Divergence: if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum a_{n}$ diverges. For example, the series

$$
\sum_{n=1}^{\infty} \frac{1}{1+s^{n}}
$$

diverges for $0<s \leq 1$ because $1 /\left(1+s^{n}\right)$ does not converge to zero as $n \rightarrow \infty$. It is, however, wrong in general to conclude from the convergence of $\left\{a_{n}\right\}$ to zero that the series $\sum a_{n}$ converges. For instance, in Example 5.3 the series diverges, yet $\lim a_{n}=0$.

Suppose now that the series $\sum a_{n}$ consists of positive terms. Then partial sums $\left\{A_{n}\right\}$ form an increasing sequence. If this sequence is bounded, then by the Monotone Convergence Theorem, it follows that the sequence of partial sums (and therefore the series) converges. On the other hand, if the sequence of partial sums is unbounded, then the series diverges. We illustrate this in the next example.

Consider the so-called harmonic series ${ }^{1}$ given by

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n} . \tag{5.5}
\end{equation*}
$$

Indeed, starting from the third term we can divide the series into groups consisting of $2,4,8, \ldots, 2^{k}, \ldots$ terms in each group:

$$
\underbrace{\frac{1}{3}+\frac{1}{4}}_{2}+\underbrace{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}_{4}+\underbrace{\frac{1}{9}+\cdots+\frac{1}{16}}_{8}+\ldots
$$

[^0]Each group adds up to a number bigger than $1 / 2$. Therefore, if we denote by H_{n} the partial sum of the first n terms of the series, we see that

$$
\begin{align*}
& H_{4}>1 / 2+1 / 2=1 \\
& H_{8}>H_{4}+1 / 2>1+1 / 2=3 / 2 \\
& H_{16}>H_{8}+1 / 2>3 / 2+1 / 2=2 \tag{5.6}\\
& \ldots \\
& H_{2^{k}}>k \cdot 1 / 2
\end{align*}
$$

Thus the sequence of partial sums is unbounded, and the harmonic series diverges. We note that as n grows, the value of the partial sum of n terms grows rather slowly. For example, Euler calculated that $H_{1000} \approx 7.48$ and $H_{1000000}=14.39$.

Let us consider a more general series of the form

$$
\begin{equation*}
1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \tag{5.7}
\end{equation*}
$$

where s is some positive real number. If $s=1$, then (5.7) becomes the harmonic series. If $s<1$, then the terms in (5.7) are bigger than the corresponding terms in (5.5), and so are the partial sums, hence, the series also diverges.

Now consider the case $s>1$. We write $s=1+t$, where t is some positive number. We have

$$
\begin{equation*}
\frac{1}{(n+1)^{s}}+\frac{1}{(n+2)^{s}}+\cdots+\frac{1}{(2 n)^{s}}<n \cdot \frac{1}{n^{s}}=\frac{1}{n^{t}} . \tag{5.8}
\end{equation*}
$$

Splitting the series into groups, analogously to what we did for the harmonic series we have

$$
\underbrace{\frac{1}{3^{s}}+\frac{1}{4^{s}}}_{2}+\underbrace{\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}}_{4}+\underbrace{\frac{1}{9^{s}}+\cdots+\frac{1}{16^{s}}}_{8}+\ldots
$$

From (5.8) it follows that each group above is less than the corresponding term of the geometric series

$$
\left\{\frac{1}{2^{t}}, \frac{1}{4^{t}}, \frac{1}{8^{t}}, \ldots\right\}=\left\{\frac{1}{2^{t}}, \frac{1}{\left(2^{t}\right)^{2}}, \frac{1}{\left(2^{t}\right)^{3}}, \ldots\right\}
$$

Since this geometric series $\sum\left(\frac{1}{2^{t}}\right)^{n}$ converges, we conclude that the sequence of partial sums of the series in (5.7) is bounded above, and therefore converges by the Monotone Convergence Theorem. Hence, the series (5.7) also converges. Another proof of convergence of the series for $s>1$ will be given later, when we discuss the Integral Test for Convergence. The sums of this series are the values of a famous function $\zeta(s)$, called the Riemann ζ-function. It plays fundamental role in Number theory.

Example 5.4. Consider

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-n}
$$

First observe that $\frac{1}{n^{2}-n}=\frac{1}{n-1}-\frac{1}{n}$. Therefore, the partial sum A_{n} of this series equals

$$
\begin{align*}
A_{n} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\cdots+\left(-\frac{1}{n-1}+\frac{1}{n-1}\right)-\frac{1}{n}=1-\frac{1}{n} . \tag{5.9}
\end{align*}
$$

Thus $A_{n} \rightarrow 1$, and the series converges to 1 . Series of this type are called telescoping series. \diamond
5.2. Comparison Theorems. Convergence or divergence of series can be often determined by comparing a given series to another series, which is known to converge or diverge. In the next theorems we assume that $\sum_{n}^{\infty} a_{n}$, and $\sum_{n}^{\infty} b_{n}$ are series with positive terms
Theorem 5.2 (Comparison Test). Suppose that there exists a number $N>0$ such that the inequality $a_{n} \leq b_{n}$ holds for all $n>N$. Then convergence of $\sum b_{n}$ implies convergence of $\sum a_{n}$. Equivalently, divergence of $\sum a_{n}$ implies that of $\sum b_{n}$.
Proof. We may drop any finite number of terms of the series without affecting its convergence. Therefore, without loss of generality we may assume that that $a_{n} \leq b_{n}$ for all $n=1,2, \ldots$. Denote by A_{n}, and B_{n} the partial sums of $\sum a_{n}$ and $\sum b_{n}$ respectively. Then $A_{n} \leq B_{n}$. Suppose that $\sum b_{n}$ converges. Then the sequence of partial sums $\left\{B_{n}\right\}$ is bounded above: $B_{n} \leq L$, for some $L>0$. Therefore $A_{n} \leq B_{n} \leq L$, and by the Monotone Convergence Theorem, the sequence $\left\{A_{n}\right\}$ also converges. This proves the theorem.
Theorem 5.3 (Limit Comparison Test). Suppose there exists a limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=K \quad(0 \leq K \leq \infty) .
$$

Then:
(i) if the series $\sum b_{n}$ converges and $K<\infty$, then $\sum a_{n}$ converges.
(ii) if $\sum b_{n}$ diverges and $K>0$, then $\sum a_{n}$ also diverges.

Proof. Suppose $\sum b_{n}$ converges with $K<\infty$. Given any $\varepsilon>0$ by definition of the limit, for sufficiently large n we have

$$
\frac{a_{n}}{b_{n}}<K+\varepsilon \Longrightarrow a_{n}<(K+\varepsilon) \cdot b_{n} .
$$

Since the series $\sum c_{n}=\sum(K+\varepsilon) b_{n}$ obtained by multiplying the series $\sum b_{n}$ by a constant $(K+\varepsilon)$ converges, we may apply the Comparison Test to $\sum a_{n}$ and $\sum c_{n}$ to conclude that the series $\sum a_{n}$ also converges.

The proof of the second statement is Exercise 5.9.
Theorem 5.4. Suppose there exists $N>0$ such that for $n>N$ we have

$$
\begin{equation*}
\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}} . \tag{5.10}
\end{equation*}
$$

Then convergence of $\sum b_{n}$ implies convergence of $\sum a_{n}$ and divergence of $\sum a_{n}$ implies that of $\sum b_{n}$.

The proof of this theorem is Exercise 5.12.
Example 5.5. Test for convergence the following series.
(i) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$,
(ii) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$,
(iii) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\ln \frac{n+1}{n}\right)$.

Solutions:
(i) $\frac{(n!)^{2}}{(2 n)!}=\frac{1^{2} 2^{2} 3^{2} \ldots n^{2}}{1 \cdot 2 \cdot \ldots \cdot n \cdot(n+1) \cdot \ldots \cdot(2 n)}=\frac{1}{n+1} \cdot \frac{2}{n+2} \cdot \ldots \cdot \frac{n}{2 n}<\frac{1}{2^{n}}$. Since $\sum \frac{1}{2^{n}}$ converges, it follows by the Comparison Test (Theorem 5.2) that the series $\sum \frac{n!}{(2 n)!}$ also converges.
(ii) We use the Limit Comparison Theorem: Since

$$
\frac{1}{n \sqrt[n]{n}} \div \frac{1}{n}=\frac{1}{\sqrt[n]{n}} \rightarrow 1
$$

and the harmonic series $\sum \frac{1}{n}$ diverges, we conclude that the series $\sum \frac{1}{n \sqrt[n]{n}}$ also diverges.
(iii) We use the inequality $\ln (1+x) \leq x$, which holds for $-1<x$ (See Lecture 1, Example. 1.12). First observer that

$$
\ln \left(1+\frac{1}{n}\right)<\frac{1}{n} \quad \Longrightarrow \quad 0<\frac{1}{n}-\ln \left(\frac{n+1}{n}\right) .
$$

Furthermore,

$$
-\ln \frac{n+1}{n}=\ln \frac{n}{n+1}=\ln \left(1-\frac{1}{n+1}\right)<-\frac{1}{n+1} .
$$

Therefore,

$$
0<\frac{1}{n}-\ln \frac{n+1}{n}<\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}<\frac{1}{n^{2}}
$$

Thus, the series converges by the Comparison Test and convergence of $\sum \frac{1}{n^{2}}$. \diamond
5.3. Alternating Series. So far we have considered convergence of series with positive terms. The following result applies to alternating series, i.e., those in which signs of the general terms alternate between positive and negative.

Theorem 5.5 (The Alternating Series Test). Suppose that the sequence $\left\{b_{n}\right\}$ satisfies
(i) $b_{n} \geq 0$ for sufficiently large n
(ii) b_{n} is a decreasing sequence starting from some large n.
(iii) $\lim _{n \rightarrow \infty} b_{n}=0$.

Then the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots
$$

converges.
Proof. First observe that even partial sums form an increasing sequence. Indeed, $S_{2 n+2}=S_{2 n}+$ $\left(b_{2 n+1}-b_{2 n+2}\right) \geq S_{2 n}, n \geq 1$. On the other hand, $S_{2 n} \leq b_{1}$. Therefore, by the Monotone Convergence Theorem, the sequence of even partial sums converges, say, $\lim _{n \rightarrow \infty} S_{2 n}=S$. On the other hand, $S_{2 n+1}=S_{2 n}+b_{2 n+1}$, and so

$$
\lim _{n \rightarrow \infty} S_{2 n+1}=\lim _{n \rightarrow \infty} S_{2 n}+\lim _{n \rightarrow \infty} b_{2 n+1}=S
$$

because $\lim _{n \rightarrow \infty} b_{n}=0$.

Example 5.6. Consider the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}$. Since $\frac{1}{n}<\pi / 2$, this is an alternating series with $b_{n}=\sin \frac{1}{n}$. Let $g(x)=\sin \frac{1}{x}$, then $g^{\prime}(x)=-\frac{1}{x^{2}} \cos \frac{1}{x}<0$ for $x>1$. Therefore, $\left\{b_{n}\right\}$ is a decreasing sequence. Finally, $\lim _{n \rightarrow \infty} \sin \frac{1}{n}=0$. Thus, by the Alternating Series Test, the series converges.
5.4. Absolute and Conditional Convergence. For series with arbitrary terms we may distinguished two types of convergence.
Definition 5.6. A series $\sum_{k=1}^{\infty} a_{k}$ converges absolutely if the absolute value series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges. If the series $\sum_{k=1}^{\infty} a_{k}$ converges but the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges, we say that $\sum_{k=1}^{\infty} a_{k}$ converges conditionally.

By putting absolute value we let all the terms of the series be positive which makes it more difficult for a series to converge, since negative terms can no longer cancel positive terms. So one may expect that certain series converge conditionally only. On the other hand, if a series of absolute values converges, then so does the original series, as the next theorem asserts.
Theorem 5.7. If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.
Proof. We have $0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|$. Therefore, by the Comparison Test, the series $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges. But this implies that the series $\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|$ also converges.

Example 5.7. The alternating harmonic series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

converges by the Alternating Series Test. The corresponding series of absolute values is the harmonic series (5.5) and so it diverges. Therefore, the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}$ converges conditionally. \diamond

Example 5.8. The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(\sqrt{n}+1)(\sqrt[3]{n}+1)}
$$

converges conditionally. This can be seen as follows: the series does not converge absolutely by the Limit Comparison Test (Thm 5.3) as compared to the divergent series $\sum_{n=1}^{\infty} \frac{1}{n^{5 / 6}}$. On the other hand, the original series converges by the Alternating Series Test. \diamond
Example 5.9. The series

$$
\sum_{k=1}^{\infty} \frac{\sin k}{2^{k}}=\frac{\sin 1}{2}+\frac{\sin 2}{2^{2}}+\frac{\sin 3}{2^{3}}+\cdots
$$

has positive and negative terms, which appear in "unpredictable" order, and so the Alternating Series Test does not apply. To determine convergence we consider the absolute value series $\sum_{k=1}^{\infty} \frac{|\sin k|}{2^{k}}$. Since $|\sin k| \leq 1$ for all k, we have

$$
\frac{|\sin k|}{2^{k}} \leq \frac{1}{2^{k}}
$$

The series $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$ is a convergent geometric series. Therefore, the series $\sum_{k=1}^{\infty} \frac{|\sin k|}{2^{k}}$ converges by comparison. Thus, the original series $\sum_{k=1}^{\infty} \frac{\sin k}{2^{k}}$ converges absolutely, in particular, the series $\sum_{k=1}^{\infty} \frac{\sin k}{2^{k}}$ converges. \diamond
5.5. Integral, Ratio, and Root Tests for convergence. In this subsection we consider some tests for convergence that can be used to determine convergence of certain series. The first test allows one to replace the question of convergence of a given series with the corresponding question concerning an improper integral.

Theorem 5.8 (Integral Test). Let $f(x)$ be a continuous, positive and decreasing function on the interval $[A, \infty)$ for some $A \in \mathbb{R}$, and $f(n)=a_{n}$. Then,
(i) if $\int_{A}^{\infty} d x$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$;
(ii) if $\int_{A}^{\infty} d x$ diverges, then so does $\sum_{n=1}^{\infty} a_{n}$.

The proof of the test can be done by comparing the Riemann sums that are involved in the definition of the integral.

Example 5.10. The Integral Test is very effective in determining the convergence of the the so-called p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}, \quad p>0
$$

The function $f(x)=\frac{1}{x^{p}}$ is continuous, positive, and decreasing for any $p>0$. The improper integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$ converges for $p>1$ and diverges for $0<p \leq 1$, therefore the p-series also converges only for $p>1$. \diamond
Example 5.11. To determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ we first observe that the funtion $\frac{1}{x \ln x}$ is positive and decreasing for $x>1$. By the Integral Test, to determine convergence of the series, we may consider the improper integral

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}
$$

We have

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{d x}{x \ln x}=\left.\lim _{b \rightarrow \infty} \ln (\ln x)\right|_{2} ^{b}=\infty
$$

where we used the substitution $y=\ln x$. Thus, by the Integral Test, the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges. \diamond

The next two tests are based on the comparison of a given series with an appropriate geometric series.

Theorem 5.9 (Ratio Test). Consider the series $\sum_{n=1}^{\infty} a_{n}$, with $a_{n} \neq 0$. Suppose that

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

exists. Then
(i) if $L<1$ then the series converges absolutely;
(ii) if $L>1$ then the series diverges;
(iii) if $L=1$ or the limit does not to exist, then the test is inconclusive, i.e., there exist convergent and divergent series for which $L=1$.

Proof. We will show that if $L<1$ then the series converges. Let b be a number such that $L<b<1$. Then there exists $N>0$ such that for $n>N$ we have

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<b \Rightarrow\left|a_{n+1}\right|<b\left|a_{n}\right|
$$

Similarly, $\left|a_{n+2}\right|<b\left|a_{n+1}\right|<b^{2} a_{n}, \ldots,\left|a_{n+k}\right|<b^{k} a_{n}$. Therefore, the series $\sum_{k=N}^{\infty}\left|a_{k}\right|$ satisfies $\left|a_{k}\right|<a_{N} b^{k}$. The geometric series $\sum_{k=1}^{\infty} a_{N} b^{k}$ converges, therefore, by the Comparison Test, the series $\sum\left|a_{n}\right|$ also converges.

The proof of the case $L>1$ is Exercise 5.16.
Example 5.12. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}} .
$$

To determine its convergence we use the Ratio Test. We have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} / 2^{n+1}}{n^{2} / 2^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \cdot \frac{1}{2}=\frac{1}{2} .
$$

Thus, the series converges absolutely. \diamond
Example 5.13. Consider the p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}},
$$

where $p>0$. Then the Ratio test is inconclusive for any value of p, but the Integral Test works. \diamond
Theorem 5.10 (Root Test). Given a series with positive terms $\sum_{k=1}^{\infty} a_{k}$, let

$$
L=\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}} .
$$

Then
(i) if $L<1$, the series converges;
(ii) if $L>1$, the series diverges;
(iii) if $L=1$, the test is inconclusive.

Proof. Suppose that $L<1$. Let $\varepsilon>0$ be so small that $L+\varepsilon<1$. Then by the definition of the limit there exists $N>0$ such that for all $n>N$ we have

$$
L-\varepsilon \leq \sqrt[k]{a_{k}} \leq L+\varepsilon
$$

From this inequality we conclude that $a_{k} \leq(L+\varepsilon)^{k}$. The geometric series $\sum_{k=1}^{\infty}(L+\varepsilon)^{k}$ converges, and therefore, by the Comparison Test, the series $\sum a_{k}$ also converges.

Example 5.14. Test for convergence $\sum_{k=1}^{\infty} \frac{\sqrt{3^{k}}}{2^{k}}$. We have

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\frac{\sqrt{3^{k}}}{2^{k}}}=\lim _{k \rightarrow \infty} \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}<1
$$

Thus, the series converges, by the Root Test. \diamond

Exercises

5•1 Use the technique of Example 5.2 to find the values of q for which the series

$$
\sum_{n=1}^{\infty} n q^{n}
$$

converges.
5.2 Prove that if the series $\sum a_{n}$ converges then its remainder R_{m} as defined in (5.4) converges to zero.
$5 \cdot 3$ Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}
$$

is convergent or divergent. If it is convergent, find its sum.
5.4 Find the value of c such that $\sum_{n=1}^{\infty} 2^{n c}=2015$.
5.5 If the n-th partial sum of a series $\sum a_{n}$ is $S_{n}=3-n 2^{-n}$, find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
5.6 Let $\sum_{n=1}^{\infty} a_{n}$ be a series with positive terms.
(a) Suppose that for any $n \geq 1$, the partial sum S_{n} satisfies $S_{n}<100$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) Suppose that for any $n \geq 1$,

$$
a_{n}<\left(\frac{1}{2}\right)^{n} .
$$

Prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
In both parts, you do not need to find the sum of the series.
5•7 Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{1+s^{n}}$ converges or diverges for $s>1$.
5•8 Find the sum of the series if it is converging: $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$.
5.9 Prove part (ii) of Theorem 5.3.

5•10 Prove that the series in Example 5.6 converges conditionally only.
$\mathbf{5 \cdot 1 1}$ Test for convergence the following series:
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}$,
(b) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$,
(c) $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{p}}, p>0$,
(d) $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\ln n}}$.
$\mathbf{5} \cdot \mathbf{1 2}$ Prove Theorem 5.4. Hint: multiply equations (5.10) term by term, and use Theorem (5.2).
5•13 Show that if $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} \ln \left(1+a_{n}\right)$ is also convergent.
5•14 Give an example that shows that it is possible for both $\sum a_{n}$ and $\sum b_{n}$ to diverge, but for $\sum a_{n} b_{n}$ to converge.
5•15 If $\sum a_{n}$ and $\sum b_{n}$ are both convergent series with positive terms, is it true that $\sum a_{n} b_{n}$ is also convergent? Justify your answer.
5•16 Prove the Ratio and the Root Test for the case $L>1$.

5•17 Determine whether the series converges absolutely, conditionally, or diverges.
(i) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{n}}{n+10}$
(ii) $\sum_{n=1}^{\infty} n^{5}\left(\frac{2-3 n}{4 n+3}\right)^{n}$
(iii) $\sum_{n=1}^{\infty} \frac{\sin 5 n}{n^{5}}$.
$\mathbf{5 \cdot 1 8}$ Let $\left\{f_{n}\right\}$ be the Fibonacci sequence, given by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$, for $n>2$. Use Exercise 4.13 to assess the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{1}{f_{n}}
$$

5•19 Determine the convergence of the series

$$
\frac{2}{5}+\frac{2 \cdot 6}{5 \cdot 8}+\frac{2 \cdot 6 \cdot 10}{5 \cdot 8 \cdot 11}+\frac{2 \cdot 6 \cdot 10 \cdot 14}{5 \cdot 8 \cdot 11 \cdot 14}+\cdots
$$

$\mathbf{5 \cdot 2 0}$ (i) Show that the following series converges.

$$
\sum_{n=1}^{\infty} \frac{a^{n}}{n!}, \quad a>0 .
$$

(ii) Explain how to use the result of part (i) to prove that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a>0$.

5•21 Determine whether the series below converges absolutely, conditionally, or diverges.

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3^{n} n!}{n^{n}}
$$

Hint: Recall that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
5.22 Assess the convergence of the following alternating series

$$
\sum_{n=2}^{\infty}\left(\frac{1}{\sqrt{n}-1}-\frac{1}{\sqrt{n}+1}\right)
$$

[^0]: ${ }^{1}$ The reason for the name is that every term of the series is the harmonic mean of the two neighbouring terms. Recall that the harmonic mean of two numbers a and b equals $\frac{2 a b}{a+b}$. The harmonic mean is an important notion in geometry and physics.

