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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

5. Series

5.1. Basic Definitions. Given a sequence of real numbers

a1, a2, a3, . . . , an, . . .

a formal expression

(5.1) a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
n=1

an

is called an infinite series, or just a series. We can add finitely many terms of the series to obtain

A1 = a1,

A2 = a1 + a2,

A3 = a1 + a2 + a3,

. . .

An = a1 + a2 + a3 + · · ·+ an,

. . .

The numbers A1, A2, . . . , An, . . . are called the partial sums of the series (5.1). They naturally form
a sequence {An} of partial sums. If A = limn→∞An, and A is a finite number, then the series

∑
an

is called convergent, A is called its sum, and we write

A =
∞∑
n=1

an.

If the sequence {An} is divergent (i.e., A is infinite or does not exist), then the series (5.1) is also
called divergent.

Example 5.1. Perhaps the simplest example of an infinite series is the so-called geometric series

a+ aq + aq2 + · · ·+ aqn + · · · =
∞∑
n=0

aqn−1, a 6= 0.

Its partial sum for q 6= 1 equals

(5.2) An =
a− aqn

1− q
.

Indeed, by direct computation we obtain

An − qAn = (a+ aq + · · ·+ aqn−1)− q(a+ aq + · · ·+ aqn−1) = a− aqn,

from which equation (5.2) immediately follows.
1
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By taking the limit in (5.2), we see that if |q| < 1 then the geometric series converges with the
sum equal to a

1−q . If |q| ≥ 1, then the series diverges. In particular, if q = 1, then limAn is either

∞ or −∞, depending on the sign of a, and if q = −1, then the series takes the form

a− a+ a− a+ . . . ,

and the value of partial sums alternates between a and 0. To summarize, the geometric series
converges if |q| < 1, and

a+ aq + aq2 + · · ·+ aqn + · · · =
∞∑
n=0

aqn−1 =
a

1− q
.

�

Example 5.2. Consider the series

∞∑
n=1

n

(
1

2

)n

=
1

2
+

1

2
+

3

8
+

1

4
+ · · · .

This series resembles the geometric series, and we can try to find its sum using a similar technique.
Let Sn be a partial sum of the first n terms. Then

Sn −
1

2
Sn =

(
1

2
+

2

22
+

3

23
+ · · ·+ n

2n

)
−
(

1

22
+

2

23
+

3

24
+ · · ·+ n

2n+1

)

=
1

2
+

2− 1

22
+

3− 2

23
+ · · ·+ n− (n− 1)

2n
− n

2n+1
=

(
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n

)
− n

2n+1

The term in parentheses on the right-hand side of the above identity is the geometric series with
a = 1/2 and q = 1/2, its partial sum was computed in the previous example:

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n
=

1/2− 1/2(1/2)n

1− 1/2
= 1− (1/2)n.

From this we conclude that

(5.3) Sn =
1− (1/2)n − n/2n+1

1/2
= 2− 1

2n−1
− n

2n

It follows that Sn converges to 2 as n→∞. Thus,

∞∑
n=1

n

(
1

2

)n

= 2.

�

Example 5.3. Determine the convergence of the series

∞∑
n=1

1√
n
.

We estimate its partial sum:

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n
> n · 1√

n
=
√
n.

We see that the partial sums grow indefinitely as n goes to infinity. Thus this series diverges. �
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Let

∞∑
n=1

an be a series, and Am =

m∑
n=1

an be the partial sum. The quantity

(5.4) Rm =
∞∑
n=1

an −Am =
∞∑

n=m+1

an

is called the remainder of the series. We first observe that the series
∑
an converges if and only if

the remainder Rm converges (as a series). Therefore, we may remove any finite (possibly very large!)
number of elements from the series without affecting its convergence (or divergence). Further, if
the series

∑
an converges, then by taking limit in (5.4) as m→∞ we see that Rm → 0.

The next theorem gives a simple test to verify divergence of certain series.

Theorem 5.1. If the series

∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. Let An = a1 + · · · + an. Then, since the series
∑
an converges, limAn exists as n → ∞.

Hence, an = An −An−1, and so limn→∞ an = limn→∞(An −An−1) = 0. �

The contrapositive formulation of this theorem is sometimes called the Test for Divergence: if
limn→∞ an 6= 0, then the series

∑
an diverges. For example, the series

∞∑
n=1

1

1 + sn

diverges for 0 < s ≤ 1 because 1/(1 + sn) does not converge to zero as n → ∞. It is, however,
wrong in general to conclude from the convergence of {an} to zero that the series

∑
an converges.

For instance, in Example 5.3 the series diverges, yet lim an = 0.
Suppose now that the series

∑
an consists of positive terms. Then partial sums {An} form an

increasing sequence. If this sequence is bounded, then by the Monotone Convergence Theorem, it
follows that the sequence of partial sums (and therefore the series) converges. On the other hand,
if the sequence of partial sums is unbounded, then the series diverges. We illustrate this in the next
example.

Consider the so-called harmonic series1 given by

(5.5) 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑
n=1

1

n
.

Indeed, starting from the third term we can divide the series into groups consisting of 2, 4, 8, . . . , 2k, . . .
terms in each group:

1

3
+

1

4︸ ︷︷ ︸
2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4

+
1

9
+ · · ·+ 1

16︸ ︷︷ ︸
8

+ . . . .

1The reason for the name is that every term of the series is the harmonic mean of the two neighbouring terms.
Recall that the harmonic mean of two numbers a and b equals 2ab

a+b
. The harmonic mean is an important notion in

geometry and physics.
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Each group adds up to a number bigger than 1/2. Therefore, if we denote by Hn the partial sum
of the first n terms of the series, we see that

H4 > 1/2 + 1/2 = 1

H8 > H4 + 1/2 > 1 + 1/2 = 3/2

H16 > H8 + 1/2 > 3/2 + 1/2 = 2

. . .

H2k > k · 1/2
. . .

(5.6)

Thus the sequence of partial sums is unbounded, and the harmonic series diverges. We note that as
n grows, the value of the partial sum of n terms grows rather slowly. For example, Euler calculated
that H1000 ≈ 7.48 and H1000000 = 14.39.

Let us consider a more general series of the form

(5.7) 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · · =

∞∑
n=1

1

ns
,

where s is some positive real number. If s = 1, then (5.7) becomes the harmonic series. If s < 1,
then the terms in (5.7) are bigger than the corresponding terms in (5.5), and so are the partial
sums, hence, the series also diverges.

Now consider the case s > 1. We write s = 1 + t, where t is some positive number. We have

(5.8)
1

(n+ 1)s
+

1

(n+ 2)s
+ · · ·+ 1

(2n)s
< n · 1

ns
=

1

nt
.

Splitting the series into groups, analogously to what we did for the harmonic series we have

1

3s
+

1

4s︸ ︷︷ ︸
2

+
1

5s
+

1

6s
+

1

7s
+

1

8s︸ ︷︷ ︸
4

+
1

9s
+ · · ·+ 1

16s︸ ︷︷ ︸
8

+ . . . .

From (5.8) it follows that each group above is less than the corresponding term of the geometric
series {

1

2t
,

1

4t
,

1

8t
, . . .

}
=

{
1

2t
,

1

(2t)2
,

1

(2t)3
, . . .

}
Since this geometric series

∑
( 1
2t )n converges, we conclude that the sequence of partial sums of the

series in (5.7) is bounded above, and therefore converges by the Monotone Convergence Theorem.
Hence, the series (5.7) also converges. Another proof of convergence of the series for s > 1 will
be given later, when we discuss the Integral Test for Convergence. The sums of this series are
the values of a famous function ζ(s), called the Riemann ζ-function. It plays fundamental role in
Number theory.

Example 5.4. Consider
∞∑
n=2

1

n2 − n
.
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First observe that 1
n2−n = 1

n−1 −
1
n . Therefore, the partial sum An of this series equals

An =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1 +

(
−1

2
+

1

2

)
+ · · ·+

(
− 1

n− 1
+

1

n− 1

)
− 1

n
= 1− 1

n
.

(5.9)

Thus An → 1, and the series converges to 1. Series of this type are called telescoping series. �

5.2. Comparison Theorems. Convergence or divergence of series can be often determined by
comparing a given series to another series, which is known to converge or diverge. In the next
theorems we assume that

∑∞
n an, and

∑∞
n bn are series with positive terms

Theorem 5.2 (Comparison Test). Suppose that there exists a number N > 0 such that the in-
equality an ≤ bn holds for all n > N . Then convergence of

∑
bn implies convergence of

∑
an.

Equivalently, divergence of
∑
an implies that of

∑
bn.

Proof. We may drop any finite number of terms of the series without affecting its convergence.
Therefore, without loss of generality we may assume that that an ≤ bn for all n = 1, 2, . . . . Denote
by An, and Bn the partial sums of

∑
an and

∑
bn respectively. Then An ≤ Bn. Suppose that∑

bn converges. Then the sequence of partial sums {Bn} is bounded above: Bn ≤ L, for some
L > 0. Therefore An ≤ Bn ≤ L, and by the Monotone Convergence Theorem, the sequence {An}
also converges. This proves the theorem. �

Theorem 5.3 (Limit Comparison Test). Suppose there exists a limit

lim
n→∞

an
bn

= K (0 ≤ K ≤ ∞).

Then:
(i) if the series

∑
bn converges and K <∞, then

∑
an converges.

(ii) if
∑
bn diverges and K > 0, then

∑
an also diverges.

Proof. Suppose
∑
bn converges with K < ∞. Given any ε > 0 by definition of the limit, for

sufficiently large n we have
an
bn

< K + ε =⇒ an < (K + ε) · bn.

Since the series
∑
cn =

∑
(K+ ε)bn obtained by multiplying the series

∑
bn by a constant (K+ ε)

converges, we may apply the Comparison Test to
∑
an and

∑
cn to conclude that the series

∑
an

also converges.
The proof of the second statement is Exercise 5.9. �

Theorem 5.4. Suppose there exists N > 0 such that for n > N we have

(5.10)
an+1

an
≤ bn+1

bn
.

Then convergence of
∑
bn implies convergence of

∑
an and divergence of

∑
an implies that of∑

bn.

The proof of this theorem is Exercise 5.12.

Example 5.5. Test for convergence the following series.

(i)
∞∑
n=1

(n!)2

(2n)!
,
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(ii)

∞∑
n=1

1

n n
√
n

,

(iii)
∞∑
n=1

(
1

n
− ln

n+ 1

n

)
.

Solutions:

(i)
(n!)2

(2n)!
=

122232 . . . n2

1 · 2 · ... · n · (n+ 1) · ... · (2n)
=

1

n+ 1
· 2

n+ 2
· ... · n

2n
<

1

2n
. Since

∑ 1
2n converges,

it follows by the Comparison Test (Theorem 5.2) that the series
∑ n!

(2n)! also converges.

(ii) We use the Limit Comparison Theorem: Since

1

n n
√
n
÷ 1

n
=

1
n
√
n
→ 1,

and the harmonic series
∑ 1

n diverges, we conclude that the series
∑ 1

n n√n also diverges.

(iii) We use the inequality ln(1+x) ≤ x, which holds for −1 < x (See Lecture 1, Example. 1.12).
First observer that

ln

(
1 +

1

n

)
<

1

n
=⇒ 0 <

1

n
− ln

(
n+ 1

n

)
.

Furthermore,

− ln
n+ 1

n
= ln

n

n+ 1
= ln

(
1− 1

n+ 1

)
< − 1

n+ 1
.

Therefore,

0 <
1

n
− ln

n+ 1

n
<

1

n
− 1

n+ 1
=

1

n(n+ 1)
<

1

n2
.

Thus, the series converges by the Comparison Test and convergence of
∑ 1

n2 . �

5.3. Alternating Series. So far we have considered convergence of series with positive terms.
The following result applies to alternating series, i.e., those in which signs of the general terms
alternate between positive and negative.

Theorem 5.5 (The Alternating Series Test). Suppose that the sequence {bn} satisfies
(i) bn ≥ 0 for sufficiently large n
(ii) bn is a decreasing sequence starting from some large n.
(iii) limn→∞ bn = 0.
Then the alternating series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + . . .

converges.

Proof. First observe that even partial sums form an increasing sequence. Indeed, S2n+2 = S2n +
(b2n+1 − b2n+2) ≥ S2n, n ≥ 1. On the other hand, S2n ≤ b1. Therefore, by the Monotone
Convergence Theorem, the sequence of even partial sums converges, say, limn→∞ S2n = S. On the
other hand, S2n+1 = S2n + b2n+1, and so

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

b2n+1 = S,

because limn→∞ bn = 0. �
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Example 5.6. Consider the series
∑∞

n=1(−1)n sin 1
n . Since 1

n < π/2, this is an alternating series

with bn = sin 1
n . Let g(x) = sin 1

x , then g′(x) = − 1
x2 cos 1

x < 0 for x > 1. Therefore, {bn} is a

decreasing sequence. Finally, limn→∞ sin 1
n = 0. Thus, by the Alternating Series Test, the series

converges.

5.4. Absolute and Conditional Convergence. For series with arbitrary terms we may distin-
guished two types of convergence.

Definition 5.6. A series
∑∞

k=1 ak converges absolutely if the absolute value series
∑∞

k=1 |ak| con-
verges. If the series

∑∞
k=1 ak converges but the series

∑∞
k=1 |ak| diverges, we say that

∑∞
k=1 ak

converges conditionally.

By putting absolute value we let all the terms of the series be positive which makes it more
difficult for a series to converge, since negative terms can no longer cancel positive terms. So one
may expect that certain series converge conditionally only. On the other hand, if a series of absolute
values converges, then so does the original series, as the next theorem asserts.

Theorem 5.7. If a series
∑
an is absolutely convergent, then it is convergent.

Proof. We have 0 ≤ an + |an| ≤ 2|an|. Therefore, by the Comparison Test, the series
∑

(an + |an|)
converges. But this implies that the series

∑
an =

∑
(an + |an|)−

∑
|an| also converges. �

Example 5.7. The alternating harmonic series
∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges by the Alternating Series Test. The corresponding series of absolute values is the har-
monic series (5.5) and so it diverges. Therefore, the series

∑∞
k=1(−1)k+1 1

k converges conditionally.
�

Example 5.8. The series
∞∑
n=1

(−1)n

(
√
n+ 1)( 3

√
n+ 1)

converges conditionally. This can be seen as follows: the series does not converge absolutely by the
Limit Comparison Test (Thm 5.3) as compared to the divergent series

∑∞
n=1

1
n5/6 . On the other

hand, the original series converges by the Alternating Series Test. �

Example 5.9. The series
∞∑
k=1

sin k

2k
=

sin 1

2
+

sin 2

22
+

sin 3

23
+ · · ·

has positive and negative terms, which appear in “unpredictable” order, and so the Alternat-
ing Series Test does not apply. To determine convergence we consider the absolute value series∑∞

k=1
| sin k|
2k

. Since | sin k| ≤ 1 for all k, we have

| sin k|
2k

≤ 1

2k
.

The series
∑∞

k=1
1
2k

is a convergent geometric series. Therefore, the series
∑∞

k=1
| sin k|
2k

converges

by comparison. Thus, the original series
∑∞

k=1
sin k
2k

converges absolutely, in particular, the series∑∞
k=1

sin k
2k

converges. �
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5.5. Integral, Ratio, and Root Tests for convergence. In this subsection we consider some
tests for convergence that can be used to determine convergence of certain series. The first test
allows one to replace the question of convergence of a given series with the corresponding question
concerning an improper integral.

Theorem 5.8 (Integral Test). Let f(x) be a continuous, positive and decreasing function on the
interval [A,∞) for some A ∈ R, and f(n) = an. Then,

(i) if
∫∞
A dx converges, then so does

∑∞
n=1 an;

(ii) if
∫∞
A dx diverges, then so does

∑∞
n=1 an.

The proof of the test can be done by comparing the Riemann sums that are involved in the
definition of the integral.

Example 5.10. The Integral Test is very effective in determining the convergence of the the
so-called p-series

∞∑
n=1

1

np
, p > 0.

The function f(x) = 1
xp is continuous, positive, and decreasing for any p > 0. The improper integral∫∞

1
dx
xp converges for p > 1 and diverges for 0 < p ≤ 1, therefore the p-series also converges only for

p > 1. �

Example 5.11. To determine whether the series
∑∞

n=2
1

n lnn we first observe that the funtion 1
x lnx

is positive and decreasing for x > 1. By the Integral Test, to determine convergence of the series,
we may consider the improper integral ∫ ∞

2

dx

x lnx
.

We have ∫ ∞
2

dx

x lnx
= lim

b→∞

∫ b

2

dx

x lnx
= lim

b→∞
ln(lnx)

∣∣∣∣b
2

=∞,

where we used the substitution y = lnx. Thus, by the Integral Test, the series
∑∞

n=2
1

n lnn diverges.
�

The next two tests are based on the comparison of a given series with an appropriate geometric
series.

Theorem 5.9 (Ratio Test). Consider the series
∑∞

n=1 an, with an 6= 0. Suppose that

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists. Then

(i) if L < 1 then the series converges absolutely;
(ii) if L > 1 then the series diverges;
(iii) if L = 1 or the limit does not to exist, then the test is inconclusive, i.e., there exist convergent

and divergent series for which L = 1.

Proof. We will show that if L < 1 then the series converges. Let b be a number such that L < b < 1.
Then there exists N > 0 such that for n > N we have

|an+1|
|an|

< b ⇒ |an+1| < b|an|.
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Similarly, |an+2| < b|an+1| < b2an, . . . , |an+k| < bkan. Therefore, the series
∑∞

k=N |ak| satisfies

|ak| < aNb
k. The geometric series

∑∞
k=1 aNb

k converges, therefore, by the Comparison Test, the
series

∑
|an| also converges.

The proof of the case L > 1 is Exercise 5.16. �

Example 5.12. Consider the series
∞∑
n=1

an =
∞∑
n=1

(−1)n n2

2n
.

To determine its convergence we use the Ratio Test. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2/2n+1

n2/2n
= lim

n→∞

(n+ 1)2

n2
· 1

2
=

1

2
.

Thus, the series converges absolutely. �

Example 5.13. Consider the p-series
∞∑
n=1

1

np
,

where p > 0. Then the Ratio test is inconclusive for any value of p, but the Integral Test works. �

Theorem 5.10 (Root Test). Given a series with positive terms
∑∞

k=1 ak, let

L = lim
k→∞

k
√
ak.

Then
(i) if L < 1 , the series converges;
(ii) if L > 1 , the series diverges;
(iii) if L = 1 , the test is inconclusive.

Proof. Suppose that L < 1. Let ε > 0 be so small that L + ε < 1. Then by the definition of the
limit there exists N > 0 such that for all n > N we have

L− ε ≤ k
√
ak ≤ L+ ε.

From this inequality we conclude that ak ≤ (L+ε)k. The geometric series
∑∞

k=1(L+ε)k converges,
and therefore, by the Comparison Test, the series

∑
ak also converges. �

Example 5.14. Test for convergence
∑∞

k=1

√
3k

2k
. We have

lim
k→∞

k

√√
3k

2k
= lim

k→∞

√
3

2
=

√
3

2
< 1.

Thus, the series converges, by the Root Test. �

Exercises

5·1 Use the technique of Example 5.2 to find the values of q for which the series
∞∑
n=1

nqn

converges.
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5·2 Prove that if the series
∑
an converges then its remainder Rm as defined in (5.4) converges to

zero.

5·3 Determine whether the series
∞∑
n=1

1

n2 + 5n+ 6

is convergent or divergent. If it is convergent, find its sum.

5·4 Find the value of c such that
∑∞

n=1 2nc = 2015.

5·5 If the n-th partial sum of a series
∑
an is Sn = 3− n2−n, find an and

∑∞
n=1an.

5·6 Let
∑∞

n=1an be a series with positive terms.
(a) Suppose that for any n ≥ 1, the partial sum Sn satisfies Sn < 100. Prove that

∑∞
n=1an

converges.
(b) Suppose that for any n ≥ 1,

an <

(
1

2

)n

.

Prove that
∑∞

n=1an converges.
In both parts, you do not need to find the sum of the series.

5·7 Determine whether the series
∞∑
n=1

1

1 + sn
converges or diverges for s > 1.

5·8 Find the sum of the series if it is converging:
∞∑
n=1

1

n(n+ 3)
.

5·9 Prove part (ii) of Theorem 5.3.

5·10 Prove that the series in Example 5.6 converges conditionally only.

5·11 Test for convergence the following series:

(a)

∞∑
n=1

1√
n(n+ 2)

,

(b)

∞∑
n=1

n!

nn
,

(c)
∞∑
n=1

1

(lnn)p
, p > 0,

(d)

∞∑
n=1

1

(lnn)lnn
.

5·12 Prove Theorem 5.4. Hint: multiply equations (5.10) term by term, and use Theorem (5.2).

5·13 Show that if an > 0 and
∑∞

n=1 an is convergent, then
∑∞

n=1 ln(1 + an) is also convergent.

5·14 Give an example that shows that it is possible for both
∑
an and

∑
bn to diverge, but for∑

anbn to converge.

5·15 If
∑
an and

∑
bn are both convergent series with positive terms, is it true that

∑
anbn is

also convergent? Justify your answer.

5·16 Prove the Ratio and the Root Test for the case L > 1.
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5·17 Determine whether the series converges absolutely, conditionally, or diverges.

(i)

∞∑
n=1

(−1)n−1
√
n

n+ 10

(ii)
∞∑
n=1

n5
(

2− 3n

4n+ 3

)n

(iii)
∞∑
n=1

sin 5n

n5
.

5·18 Let {fn} be the Fibonacci sequence, given by f1 = f2 = 1, fn = fn−1 + fn−2, for n > 2. Use
Exercise 4.13 to assess the convergence of the series

∞∑
n=1

1

fn

5·19 Determine the convergence of the series

2

5
+

2 · 6
5 · 8

+
2 · 6 · 10

5 · 8 · 11
+

2 · 6 · 10 · 14

5 · 8 · 11 · 14
+ · · ·

5·20 (i) Show that the following series converges.
∞∑
n=1

an

n!
, a > 0.

(ii) Explain how to use the result of part (i) to prove that lim
n→∞

an

n!
= 0 for all a > 0.

5·21 Determine whether the series below converges absolutely, conditionally, or diverges.
∞∑
n=1

(−1)n−1
3n n!

nn

Hint: Recall that lim
n→∞

(
1 +

1

n

)n

= e.

5·22 Assess the convergence of the following alternating series
∞∑
n=2

(
1√
n− 1

− 1√
n+ 1

)
.


