v: 2010-02-06

CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

4. Sequences

Definition 4.1. A sequence s is a function $s : \mathbb{N} \to \mathbb{R}$. It can be thought of as a list of numbers

 $s_1, s_2, s_3, \ldots,$

where $s_n = s(n)$ for $n \in \mathbb{N}$.

Example 4.1.

(i) $\{s_n\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$. The corresponding function $s : \mathbb{N} \to \mathbb{R}$ is given by $s(n) = \frac{1}{n}$. (ii) Let

$$\{s_n\} = \left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \dots\right\}.$$

Here $s(n) = \frac{1}{n \cdot (n+1)}$. (iii) $\{s_n\} = \{1, -1, 1, -1, 1, -1, ...\}$. For this sequence we can take, for example, $s_n = (-1)^{n+1}$.

A sequence is defined *inductively* (or *recursively*) if $s_n = f(s_1, \ldots, s_{n-1})$, i.e., each term of the sequence is defined as a function of previously defined terms.

Example 4.2. (Fibonacci sequence¹.) By definition, the first two terms of the Fibonacci sequence $\{f_n\}$ are 1 and 1, and each consequent number is the sum of the previous two. Inductively this can be defined as follows.

$$f_1 = f_2 = 1$$
, $f_n = f_{n-1} + f_{n-2}$, for $n > 2$.

The first several terms of the Fibonacci sequence can be easily computed to be

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

 \diamond

 \diamond

Example 4.3. $s_1 = \sqrt{2}, s_n = \sqrt{2 + s_{n-1}}$ for n > 1. Then

$$s_1 = \sqrt{2}, s_2 = \sqrt{2 + \sqrt{2}}, s_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, s_4 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \dots$$

 \diamond

Definition 4.2. A sequence $\{s_n\}$ converges to a real number L if for every positive number ϵ , there exists an $N \in \mathbb{N}$ such that whenever n > N it follows that $|s_n - L| < \epsilon$. In this case we write

$$\lim_{n \to \infty} s_n = L.$$

If $\{s_n\}$ does not converge, it is said to diverge.

¹The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius Bonaccio, "son of Bonaccio"). Fibonacci's 1202 book *Liber Abaci* introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.

RASUL SHAFIKOV

The above definition is sometimes called the ϵ -N definition of convergence of a sequence.

Example 4.4. $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$

To prove this, set $s_n = \frac{1}{\sqrt{n}}$, and L = 0. We need to show that given any $\epsilon > 0$, there exists an index N > 0 such that $|s_n - L| = |1/\sqrt{n}| < \epsilon$ for n > N. The inequality $1/\sqrt{n} < \epsilon$ is equivalent to $n > 1/\epsilon^2$. By taking $N = \lceil 1/\epsilon^2 \rceil$, we ensure that if n > N, then $|1/\sqrt{n}| < \epsilon$. (Recall that $\lceil x \rceil$ is the *ceiling* function; it equals the smallest integer bigger than or equal to x.) \diamond

Using a similar argument one can show that $\lim_{n\to\infty} \frac{1}{n^p} = 0$ for p > 0 (Exercise 4.1(i)).

Example 4.5. $\lim_{n \to \infty} \frac{n+1}{n} = 1$. Let $s_n = \frac{n+1}{n}$, and L = 1. Then

$$|s_n - L| = \left|\frac{n+1}{n} - 1\right| = \left|\frac{1}{n}\right| < \epsilon,$$

and therefore, the choice of $N = \lfloor 1/\epsilon \rfloor$ will ensure that $|s_n - L| < \epsilon$.

Example 4.6.
$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0.$$

Set $s_n = \left(\frac{1}{2}\right)^n$, $L = 0.$ Then
 $\left| \left(\frac{1}{2}\right)^n \right| < \epsilon \iff n \ln(1/2) < \ln \epsilon \iff n > \frac{\ln \epsilon}{\ln(1/2)}.$

Note that $\ln(1/2) < 0$, and so division by this number reverses the inequality. We could take $N = \left\lceil \frac{\ln \epsilon}{\ln(1/2)} \right\rceil$, but then N becomes negative for $\epsilon > 1$. So a better choice is

$$N = \max\left\{ \left\lceil \frac{\ln \epsilon}{\ln(1/2)} \right\rceil, 1 \right\}$$

Definition 4.3. $\lim_{n\to\infty} s_n = \infty$ means that for any real number M there exists an $N \in \mathbb{N}$ such that $s_n > M$ whenever $n \ge N$.

Example 4.7. The Fibonacci sequence diverges to infinity. Indeed, starting with n = 5 we see that $f_n \ge n$. Therefore, given any number M > 0, $f_n > M$ for all $n > \lceil M \rceil$.

Example 4.8. Investigate convergence of $\{r^n\}$ for different values of r > 0.

Suppose r > 1. Then if M > 0 is arbitrary, the inequality $r^n > M$ is satisfied for $n > \frac{\ln M}{\ln r}$. Thus r^n diverges to infinity if r > 1. If r = 1, then r^n is a constant sequence 1, hence converges to 1. Finally, if 0 < r < 1, then $\lim_{n \to \infty} r^n = 0$. Indeed, given $\epsilon > 0$, for $n > \max\left\{\frac{\ln \epsilon}{\ln r}, 1\right\}$ the inequality $r^n < \epsilon$ holds. \diamond

The following theorem provides a convenient way of calculating the limit by reducing the problem to algebraic manipulation of existing limits. It can be proved directly using the ϵ -N definition of convergence.

 $\mathbf{2}$

Theorem 4.4 (Algebraic Limit Theorem). If $\lim a_n = A$, $\lim b_n = B$, then

(i) $\lim(ca_n) = cA \text{ for } c \in \mathbb{R},$ (ii) $\lim(a_n + b_n) = A + B,$ (iii) $\lim(a_n \cdot b_n) = A \cdot B,$ (iv) $\lim\left(\frac{a_n}{b_n}\right) = \frac{A}{B}, \text{ if } b_n \neq 0 \text{ and } B \neq 0.$

Example 4.9. Examples of use of the Algebraic Limit Theorem.

1. $\lim_{n \to \infty} \frac{5n - 3n^2}{2n^2 + (-1)^n} = \lim_{n \to \infty} \frac{5/n - 3}{2 + \frac{(-1)^n}{n^2}} = -\frac{3}{2}.$ Here we use the result of Exercise 4.1(i) and also the fact that $\lim_{n \to \infty} |a_n| = 0$ implies $\lim_{n \to \infty} a_n = 0$, which follows directly from the ϵ -N definition of convergence.

2.
$$\lim_{n \to \infty} \frac{n \ln n}{(n+1)^2} = \lim_{n \to \infty} \frac{n}{n+1} \cdot \lim_{n \to \infty} \frac{\ln n}{n+1} = 1 \cdot \lim_{n \to \infty} \frac{1/n}{1} = 0.$$
 Here we used l'Hôpital's rule.

 \diamond

A useful reduction for computing limits of sequences is the following: if f is a continuous function and $\{s_n\}$ is a sequence that converges to limit L, then $\lim_{n\to\infty} f(s_n) = f(L)$. Using this fact, one can prove that if a sequence is defined by an inductive formula

$$(1) s_{n+1} = f(s_n),$$

where f is a continuous function, then assuming that the limit L of the sequence $\{s_n\}$ exists, it can be often found by taking the limit in (1): L = f(L). Observe that $\lim s_n = \lim s_{n+1} = L$.

Example 4.10. Let $\{s_n\}$ be defined inductively by $s_1 = 1$, and

(2)
$$s_{n+1} = \frac{2s_n + 3}{4}$$

Assume that the limit of $\{s_n\}$ exists, say, $\lim_{n \to \infty} s_n = L$. Then we can take the limit as $n \to \infty$ on both sides of (2). We get

$$\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} \frac{2s_n + 3}{4}.$$
$$L = \frac{2L + 3}{4}, \text{ so } L = 3/2.$$

it follows that

Hence,
$$\lim s_n = 3/2$$
.

If a priori it is not known that the limit of $\{s_n\}$ exits, then the calculation of L from equation (1) may produce unpredictable results, see Exercise 4.4 for details. Thus, justification of existence of the limit becomes an important problem on its own.

Theorem 4.5 (Squeeze Theorem). If $a_n \leq b_n \leq c_n$ for $n > n_0$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,$$

then $\lim_{n \to \infty} b_n = L.$

Proof. Take any $\epsilon > 0$. We need to find N > 0 such that $|b_n - L| < \epsilon$ whenever n > N. Since $a_n \to L$, there is $N_1 > 0$ such that for $n > N_1$ we have $|a_n - L| < \epsilon$. An equivalent form of this inequality is

$$L - \epsilon < a_n < L + \epsilon.$$

RASUL SHAFIKOV

Similarly, since $c_n \to L$, there is $N_2 > 0$ such that $|c_n - L| < \epsilon$ for $n > N_2$, or

$$L - \epsilon < c_n < L + \epsilon$$

Take $N = \max\{N_1, N_2\}$. Then for n > N we have

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon,$$

which implies that $|b_n - L| < \epsilon$.

Example 4.11. $\lim_{n\to\infty} \frac{5^n}{n^n} = 0.$ To prove this we use the Squeeze Theorem. Indeed, for n > 6,

$$0 < \frac{5^n}{n^n} = \left(\frac{5}{n}\right)^n < \left(\frac{5}{6}\right)^n.$$

We may take $a_n = 0$, $b_n = \frac{5^n}{n^n}$, and $c_n = \left(\frac{5}{6}\right)^n$. Since $\lim_{n \to \infty} \left(\frac{5}{6}\right)^n = 0$ by Example 4.8, the Squeeze Theorem implies that $\lim_{n\to\infty}\frac{5^n}{n^n}=0.$ \diamond

Definition 4.6. A sequence $\{s_n\}$ is called increasing if $s_{n+1} \ge s_n$ for all n, strictly increasing if $s_{n+1} > s_n$ for all n. Decreasing and strictly decreasing sequences are defined similarly. Decreasing and increasing sequences are called monotone sequences.

Example 4.12. $\left\{\frac{n}{n^2+1}\right\}$ is a decreasing sequence. This can be proved either by verifying the inequality $\frac{n+1}{(n+1)^2+1} \ge \frac{n}{n^2+1}$ for all n, or by showing that that function $f(x) = \frac{x}{x^2+1}$ has a negative derivative for x >

Definition 4.7. An upper bound of a non-empty subset S of \mathbb{R} is a number b such that $b \geq s$, for any $s \in S$. A number l is a least upper bound or supremum of S, denoted by $\sup S$, if l is an upper bound of S, and if b is another upper bound of S then $l \leq b$.

Example 4.13.

- (1) $S_1 = \{0, 1/2, 2/3, 3/4, \dots\}$. Then sup $S_1 = 1$.
- (2) $S_2 = \mathbb{N}$. This set is unbounded, and therefore, the upper bound for this set does not exist.
- (3) Let

$$S_3 = \{\sin n, \ n \in \mathbb{N}\} = \{\sin 1, \sin 2, \sin 3, \dots\}.$$

This set is bounded above by 1, since $\sin x \leq 1$ for any x. But is there $\sup S_3$? If n could attain any real value, then since $\sin(\frac{\pi}{2} + 2\pi k) = 1$, the supremum would be 1. However, since $n \in \mathbb{N}$, sin $n \neq 1$ for any n. Therefore, if sup S_3 exists, in order to find it, one needs to investigate how close a natural number n can come to the set of numbers of the form $\frac{\pi}{2} + 2\pi k, k \in \mathbb{N}.$

 \diamond

Lower bound and greatest lower bound (*infimum*) are defined similarly.

Definition 4.8. A sequence $\{s_n\}$ is bounded above (below) if the set

$$\{s_n; n \in \mathbb{N}\} = \{s_1, s_2, s_3, \dots\}$$

has an upper (lower) bound.

4

Axiom of Completeness. Every nonempty set of real numbers that has an upper bound, has a least upper bound.

The Axiom of Completeness distinguishes real numbers from rational numbers. For example, the set $S = \{x \in \mathbb{R} : x^2 < 2\}$ has a least upper bound $\sqrt{2}$. However, the set of rational numbers r, such that $r^2 < 2$, is bounded, but it does not have a least upper bound in \mathbb{Q} ($\sqrt{2}$ is not rational!). Thus, the Axiom of completeness is false for rationals.

Let us return to Example 4.13(3). Since the set S_3 is bounded above by 1, the Axiom of Completeness guarantees that S_3 has a supremum, although it is a non-trivial problem to determine what it is.

Theorem 4.9 (Monotone Convergence Theorem). Every bounded monotone sequence converges.

Proof. Consider the case when $\{s_n\}$ is an increasing sequence bounded above. Since the set $S = \{s_n; n \in \mathbb{N}\}$ is bounded, by the Axiom of Completeness, there exists $l = \sup S$. We claim that l is the limit of $\{s_n\}$. Indeed, take any $\epsilon > 0$. Then since l is the supremum of S, there exists an index N such that $s_N > l - \epsilon$. But since the sequence is increasing, we have $s_n > l - \epsilon$ for all n > N. This means that $|l - s_n| < \epsilon$ for n > N, which proves that $\lim s_n = l$.

The case when $\{s_n\}$ is decreasing and bounded below can be proved in a similar way.

Example 4.14. Consider the sequence defined in Example 4.3. We may use induction to show that $s_n < 2$ for all n. Indeed, $s_1 = \sqrt{2} < 2$. If $s_n < 2$, then $2 + s_n < 4$. Taking the square root on both sides, we get $\sqrt{2 + s_n} < 2$, which means that $s_{n+1} < 2$. This shows that the inequality $s_n < 2$ holds for all n.

Further, $\{s_n\}$ is increasing. Indeed, $s_n < \sqrt{2+s_n}$ is equivalent to $s_n^2 - s_n - 2 < 0$, which holds true for $-1 < s_n < 2$. By the previous paragraph $s_n < 2$, and therefore, $s_n < s_{n+1}$ for all n.

Thus, $\{s_n\}$ is a bounded monotone sequence, and by the Monotone Convergence Theorem $\{s_n\}$ converges. The limit L can be found by taking the limit as $n \to \infty$ on both sides of $s_n = \sqrt{s_n + 2}$. We have

$$L = \sqrt{2} + L \implies L^2 - L - 2 = 0.$$

This equation has two roots: -1 and 2. Since $s_n > 0$ for all n, L = 2.

Exercises

4.1. Using only Definition 4.1 prove

(i)
$$\lim_{n \to \infty} \frac{1}{n^p} = 0, \quad p > 0$$

(ii) $\lim_{n \to \infty} \frac{1+2n}{5+3n} = \frac{2}{3}.$
(iii) $\lim_{n \to \infty} \frac{\sin n}{n+1} = 0.$

- 4.2. Give the definition of divergence of a sequence without referring to converge of a sequence. Use your definition to show that the sequence $s_n = (-1)^n + \frac{1}{n}$ diverges.
- 4.3. Give a definition of $\lim_{n\to\infty} s_n = -\infty$. Use your definition to verify that $\lim_{n\to\infty} \log_a n = -\infty$ for 0 < a < 1.
- 4.4. Let the sequence $\{s_n\}$ be defined inductively as $s_1 = 1$, and $s_{n+1} = s_n^2 1$ for n > 1. Compute *L* using the ideas of Example 4.10, and then show that this *L* cannot be the limit of the sequence s_n .

RASUL SHAFIKOV

4.5. Use the Squeeze Theorem to find $\lim_{n \to \infty} \frac{\sin n + \cos n}{\sqrt{n}}$.

4.6. Prove that if a sequence $\{s_n\}$ converges, then the set $S = \{s_1, s_2, \dots\}$ is bounded.

- 4.7. Let $\{s_n\}$ be defined as $s_1 = 0.3, s_2 = 0.33, s_3 = 0.333, \dots$. Prove that $\{s_n\}$ converges.
- 4.8. Let $\{f_n\}$ be the Fibonacci sequence as defined in Example 4.2. Consider a sequence

$$s_1 = 1$$
, $s_n = \frac{f_{n+1}}{f_n}$ for $n > 1$.

Assume that s_n converges. Find its limit.

4.9. Show that the sequence $\{x_n\}$ defined by $x_1 = 3$, $x_{n+1} = \frac{1}{4-x_n}$ for n > 1, converges. Then find the limit.