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5. TAYLOR SERIES

Let f(x) be a function that has derivatives of all orders on the interval (a — R, a + R) for some
a € R, and R > 0. Suppose that f(z) can be represented on (a — R,a + R) by a convergent power
series
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This means that for any = € (a — R,a + R), the series (1) converges to f(x). Then by direct
differentiation of the power series (1), we see that f((a) = n!c,, for all n > 0 (here (™) denotes
the derivative of f(x) of order n). From this we conclude that
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and thus the series in (1) becomes
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This is called the Taylor series centred at x = a associated with f(z). If a = 0, then (2) becomes
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which is called the Maclaurin series associated with f(x).
Example 5.1. Let P(z) be a polynomial of degree N,
P(z) = ¢+ c12 + cox® + - eyl
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associated with P(z) is exactly P(z).

By inspection, ¢, = forn=1,...N, and ¢, = 0 for n > N. Thus, the Maclaurin series

In general, however, one cannot immediately conclude that the Taylor or Maclaurin series asso-
ciated with a function f(z) converges to f(x). In fact, it is not even clear whether the Taylor series
of a given function converges at all. (Note that when we derived (2) we assumed to begin with that
f(x) has a power series representation.) Define the Taylor polynomial to be
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i.e.,, T(z) is simply the order N partial sum of the Taylor series (2). Thus, by the definition of
convergence, in order to show the convergence of the Taylor series to f(x) we need to show that
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for all  on some interval. If we define the remainder of the Taylor series to be
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then proving (5) is equivalent to showing

Ry(z) — 0, as N — oo.

The following theorem provides a useful tool for proving convergence of Taylor series. For
N
simplicity, we consider the case when a = 0. Then Tn(z) = f(0) + f/(0)x + ...%x]v, and
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Theorem 5.1 (Lagrange’s Remainder Theorem). Let f be infinitely differentiable on (—R, R).
Then there exists a number ¢ satisfying |c| < |z| such that
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(™) Bx(w) = (N +1)!

Example 5.2. Let f(x) = ¢®. Then f((0) = ¢® = 1 for all n. Therefore, ¢, = 1 and we have
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The remainder of order N of this Maclaurin series is
2N+ 2N+2
Ry = e
NEWE T v T

According to Lagrange’s Remainder Theorem, there is a number ¢, |¢| < |z|, such that

Ry(x) = RG] PN = O N
(N +1)! (N +1)!
For any fixed x, Ry(z) — 0, since for any z, %T,L — 0 as n — oo. Thus
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for all z € R.
Example 5.3. Let
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Since e~ 1/ approaches 0 as x — 0, the function g(x) is continuous at 0. In fact, using L’Hopital’s

Rule one can show that g(z) has continuous derivatives of any order at = = 0, and ¢(™ (0) = 0 for
any n > 0. The Maclaurin series associated to g(z) is, therefore, identically zero. It follows that
the Maclaurin series associated with g(x) does not converge to g(z) for = > 0.

Definition 5.2. An infinitely differentiable function f(z) is called real-analytic in a neighbourhood
of a point x = a, if for some positive R the Taylor series (2) associated with f(x) converges to f(x)
on (a — R,a+ R).
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Thus, e* is a real-analytic function, while the function g(z) in Example 5.3 is not real analytic
near x = 0.

Proof of Lagrange’s Remainder Theorem. . First note the following version of the Mean Value
Theorem: If f(x) and g(x) are continuous on a closed interval [a, b] and differentiable on the open
interval (a,b) and ¢'(z) # 0, then there exists a point ¢ € (a, b) such that
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This can be proved by applying the Mean Value Theorem to the function h(z) = (f(b)— f(a))g(xz)—
(9(b) = g(a)) f ().

Note that the n-th order derivative of Ry (x) at z = 0 vanishes for n = 0,1,2,..., N. Therefore,
if we apply (9) to functions f(z) = Ry(z) and g(x) = 2¥*! then (assume z > 0 for simplicity)
there exists a point z; € (0, z) such that

Ry(z) _ Ry(x1)
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We now repeat the process and apply (9) to functions f(x) = Ry (x) and g(z) = 2" on the interval

(0,z1): there is x5 € (0,271) such that
Riy(z1) _ Ry(z2)
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Continue the process inductively N times. In the end we get
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where zx 1 € (0,25) C -+ C (0,2). Now set ¢ = xx 1, then ¢V~ = 1, and we can write
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where the last equality follows from the fact that RE\],VH)(:I:) = (f(z) — Ty (x))NV+D = fN+D)(g),
because TJ(VNH) = 0. This proves the theorem. U

Example 5.4. Let f(z) = (14 z)'/2. Then

f(">(0):;<;—1) (;—2)...(;—714—1).

Therefore,

and hence -
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is the associated Maclaurin series. This is called the binomial series. Let us try use Lagrange’s
Remainder Theorem again to determine convergence of the series above. We have
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for some ¢, |c| < |z|. If |z| < 1, then clearly V! — 0 as N — oo. Also, limy .o (1]<,2) =0 (see
Exercise 5.3). If ¢ > 0, then we also have (1 +¢)/2~N — 0 as N — co. However, if ¢ < 0, then
(14 ¢)Y/2=N does not go to zero, and we cannot be sure that Ry (z) goes to zero.

In general, the binomial series converges for = € (—1,1), and we have
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(1+a)k = Z (i)ﬂ kE€R, and |z| < 1.

n=0
Exercises

5.1. Show that the function g(x) in Example 5.3 satisfies ¢’(0) = 0.

5.2. Use Lagrange’s Remainder Theorem to prove that the Maclaurin series of cosz converges
to cosz for all x.

5.3. Show that for any m,



