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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

5. Taylor Series

Let f(x) be a function that has derivatives of all orders on the interval (a−R, a + R) for some
a ∈ R, and R > 0. Suppose that f(x) can be represented on (a−R, a + R) by a convergent power
series

(1)
∞∑

n=0

cn(x− a)n.

This means that for any x ∈ (a − R, a + R), the series (1) converges to f(x). Then by direct
differentiation of the power series (1), we see that f (n)(a) = n! cn, for all n > 0 (here f (n) denotes
the derivative of f(x) of order n). From this we conclude that

cn =
f (n)(a)

n!
,

and thus the series in (1) becomes

(2)
∞∑

n=0

f (n)(a)
n!

(x− a)n = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .

This is called the Taylor series centred at x = a associated with f(x). If a = 0, then (2) becomes

(3)
∞∑

n=0

f (n)(0)
n!

xn = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + . . . ,

which is called the Maclaurin series associated with f(x).

Example 5.1. Let P (x) be a polynomial of degree N ,

P (x) = c0 + c1x + c2x
2 + · · ·+ cNxN .

By inspection, cn =
P (n)(0)

n!
for n = 1, . . . N , and cn = 0 for n > N . Thus, the Maclaurin series

associated with P (x) is exactly P (x).

In general, however, one cannot immediately conclude that the Taylor or Maclaurin series asso-
ciated with a function f(x) converges to f(x). In fact, it is not even clear whether the Taylor series
of a given function converges at all. (Note that when we derived (2) we assumed to begin with that
f(x) has a power series representation.) Define the Taylor polynomial to be

(4) TN (x) =
N∑

n=0

f (n)(a)
n!

(x− a)n = f(a) + f ′(a)(x− a) + · · ·+ f (N)(a)
N !

(x− a)N ,

i.e., T (x) is simply the order N partial sum of the Taylor series (2). Thus, by the definition of
convergence, in order to show the convergence of the Taylor series to f(x) we need to show that

(5) lim
N→∞

TN (x) = f(x)
1
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for all x on some interval. If we define the remainder of the Taylor series to be

(6) RN (x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n − TN (x) =
f (N+1)(a)
(N + 1)!

(x− a)N+1 +
f (N+2)(a)
(N + 2)!

(x− a)N+2 + . . . ,

then proving (5) is equivalent to showing

RN (x)→ 0, as N →∞.

The following theorem provides a useful tool for proving convergence of Taylor series. For
simplicity, we consider the case when a = 0. Then TN (x) = f(0) + f ′(0)x + . . . f (N)(0)

N ! xN , and

R(x) = f (N+1)(0)
(N+1)! xN+1 + . . . .

Theorem 5.1 (Lagrange’s Remainder Theorem). Let f be infinitely differentiable on (−R,R).
Then there exists a number c satisfying |c| < |x| such that

(7) RN (x) =
f (N+1)(c)
(N + 1)!

xN+1.

Example 5.2. Let f(x) = ex. Then f (n)(0) = e0 = 1 for all n. Therefore, cn = 1
n! , and we have

ex ∼
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

The remainder of order N of this Maclaurin series is

RN =
xN+1

(N + 1)!
+

xN+2

(N + 2)!
+ . . . .

According to Lagrange’s Remainder Theorem, there is a number c, |c| < |x|, such that

RN (x) =
f (N+1)(c)
(N + 1)!

xN+1 =
ec

(N + 1)!
xN+1.

For any fixed x, RN (x)→ 0, since for any x, xn

n! → 0 as n→∞. Thus

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

for all x ∈ R.

Example 5.3. Let

(8) g(x) =

{
e−1/x2

, if x > 0
0, if x ≤ 0

Since e−1/x2
approaches 0 as x→ 0, the function g(x) is continuous at 0. In fact, using L’Hôpital’s

Rule one can show that g(x) has continuous derivatives of any order at x = 0, and g(n)(0) = 0 for
any n > 0. The Maclaurin series associated to g(x) is, therefore, identically zero. It follows that
the Maclaurin series associated with g(x) does not converge to g(x) for x > 0.

Definition 5.2. An infinitely differentiable function f(x) is called real-analytic in a neighbourhood
of a point x = a, if for some positive R the Taylor series (2) associated with f(x) converges to f(x)
on (a−R, a + R).
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Thus, ex is a real-analytic function, while the function g(x) in Example 5.3 is not real analytic
near x = 0.

Proof of Lagrange’s Remainder Theorem. . First note the following version of the Mean Value
Theorem: If f(x) and g(x) are continuous on a closed interval [a, b] and differentiable on the open
interval (a, b) and g′(x) 6= 0, then there exists a point c ∈ (a, b) such that

(9)
f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

This can be proved by applying the Mean Value Theorem to the function h(x) = (f(b)−f(a))g(x)−
(g(b)− g(a))f(x).

Note that the n-th order derivative of RN (x) at x = 0 vanishes for n = 0, 1, 2, . . . , N . Therefore,
if we apply (9) to functions f(x) = RN (x) and g(x) = xN+1, then (assume x > 0 for simplicity)
there exists a point x1 ∈ (0, x) such that

RN (x)
xN+1

=
R′N (x1)

(N + 1)xN
1

.

We now repeat the process and apply (9) to functions f(x) = R′N (x) and g(x) = xN on the interval
(0, x1): there is x2 ∈ (0, x1) such that

R′N (x1)
xN

1

=
R′′N (x2)
NxN−1

2

.

Continue the process inductively N times. In the end we get

RN (x) =
xN+1

(N + 1)!
R

(N+1)
N (xN+1)

xN−N
N+1

,

where xN+1 ∈ (0, xN ) ⊂ · · · ⊂ (0, x). Now set c = xN+1, then cN−N = 1, and we can write

RN (x) =
R

(N+1)
N (c)

(N + 1)!
xN+1 =

f (N+1)(c)
(N + 1)!

xN+1,

where the last equality follows from the fact that R
(N+1)
N (x) = (f(x) − TN (x))(N+1) = f (N+1)(x),

because T
(N+1)
N ≡ 0. This proves the theorem. �

Example 5.4. Let f(x) = (1 + x)1/2. Then

f (n)(0) =
1
2

(
1
2
− 1
)(

1
2
− 2
)

. . .

(
1
2
− n + 1

)
.

Therefore,

cn =
(

1/2
n

)
=

1
2

(
1
2 − 1

) (
1
2 − 2

)
. . .
(

1
2 − n + 1

)
n!

,

and hence

(1 + x)1/2 ∼
∞∑

n=0

(
1/2
n

)
xn

is the associated Maclaurin series. This is called the binomial series. Let us try use Lagrange’s
Remainder Theorem again to determine convergence of the series above. We have

RN (x) =
1
2

(
1
2 − 1

) (
1
2 − 2

)
. . .
(

1
2 −N

)
(1 + c)1/2−N

(N + 1)!
xN+1
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for some c, |c| < |x|. If |x| < 1, then clearly xN+1 → 0 as N → ∞. Also, limN→∞
(1/2

N

)
= 0 (see

Exercise 5.3). If c > 0, then we also have (1 + c)1/2−N → 0 as N → ∞. However, if c < 0, then
(1 + c)1/2−N does not go to zero, and we cannot be sure that RN (x) goes to zero.

In general, the binomial series converges for x ∈ (−1, 1), and we have

(1 + x)k =
∞∑

n=0

(
k

n

)
xn, k ∈ R, and |x| < 1.

Exercises

5.1. Show that the function g(x) in Example 5.3 satisfies g′(0) = 0.
5.2. Use Lagrange’s Remainder Theorem to prove that the Maclaurin series of cos x converges

to cos x for all x.
5.3. Show that for any m,

lim
n→∞

(
m

n

)
= 0.


