v: 2010-03-23

CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

5. Taylor Series

Let $f(x)$ be a function that has derivatives of all orders on the interval $(a-R, a+R)$ for some $a \in \mathbb{R}$, and $R>0$. Suppose that $f(x)$ can be represented on $(a-R, a+R)$ by a convergent power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \tag{1}
\end{equation*}
$$

This means that for any $x \in(a-R, a+R)$, the series (1) converges to $f(x)$. Then by direct differentiation of the power series (1), we see that $f^{(n)}(a)=n!c_{n}$, for all $n>0$ (here $f^{(n)}$ denotes the derivative of $f(x)$ of order $n)$. From this we conclude that

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

and thus the series in (1) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots \tag{2}
\end{equation*}
$$

This is called the Taylor series centred at $x=a$ associated with $f(x)$. If $a=0$, then (2) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots \tag{3}
\end{equation*}
$$

which is called the Maclaurin series associated with $f(x)$.
Example 5.1. Let $P(x)$ be a polynomial of degree N,

$$
P(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{N} x^{N}
$$

By inspection, $c_{n}=\frac{P^{(n)}(0)}{n!}$ for $n=1, \ldots N$, and $c_{n}=0$ for $n>N$. Thus, the Maclaurin series associated with $P(x)$ is exactly $P(x)$.

In general, however, one cannot immediately conclude that the Taylor or Maclaurin series associated with a function $f(x)$ converges to $f(x)$. In fact, it is not even clear whether the Taylor series of a given function converges at all. (Note that when we derived (2) we assumed to begin with that $f(x)$ has a power series representation.) Define the Taylor polynomial to be

$$
\begin{equation*}
T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N} \tag{4}
\end{equation*}
$$

i.e., $T(x)$ is simply the order N partial sum of the Taylor series (2). Thus, by the definition of convergence, in order to show the convergence of the Taylor series to $f(x)$ we need to show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} T_{N}(x)=f(x) \tag{5}
\end{equation*}
$$

for all x on some interval. If we define the remainder of the Taylor series to be

$$
\begin{equation*}
R_{N}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}-T_{N}(x)=\frac{f^{(N+1)}(a)}{(N+1)!}(x-a)^{N+1}+\frac{f^{(N+2)}(a)}{(N+2)!}(x-a)^{N+2}+\ldots \tag{6}
\end{equation*}
$$

then proving (5) is equivalent to showing

$$
R_{N}(x) \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty
$$

The following theorem provides a useful tool for proving convergence of Taylor series. For simplicity, we consider the case when $a=0$. Then $T_{N}(x)=f(0)+f^{\prime}(0) x+\ldots \frac{f^{(N)}(0)}{N!} x^{N}$, and $R(x)=\frac{f^{(N+1)}(0)}{(N+1)!} x^{N+1}+\ldots$.
Theorem 5.1 (Lagrange's Remainder Theorem). Let f be infinitely differentiable on $(-R, R)$. Then there exists a number c satisfying $|c|<|x|$ such that

$$
\begin{equation*}
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1} \tag{7}
\end{equation*}
$$

Example 5.2. Let $f(x)=e^{x}$. Then $f^{(n)}(0)=e^{0}=1$ for all n. Therefore, $c_{n}=\frac{1}{n!}$, and we have

$$
e^{x} \sim \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

The remainder of order N of this Maclaurin series is

$$
R_{N}=\frac{x^{N+1}}{(N+1)!}+\frac{x^{N+2}}{(N+2)!}+\ldots
$$

According to Lagrange's Remainder Theorem, there is a number $c,|c|<|x|$, such that

$$
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}=\frac{e^{c}}{(N+1)!} x^{N+1}
$$

For any fixed $x, R_{N}(x) \rightarrow 0$, since for any $x, \frac{x^{n}}{n!} \rightarrow 0$ as $n \rightarrow \infty$. Thus

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

for all $x \in \mathbb{R}$.
Example 5.3. Let

$$
g(x)= \begin{cases}e^{-1 / x^{2}}, & \text { if } x>0 \tag{8}\\ 0, & \text { if } x \leq 0\end{cases}
$$

Since $e^{-1 / x^{2}}$ approaches 0 as $x \rightarrow 0$, the function $g(x)$ is continuous at 0 . In fact, using L'Hôpital's Rule one can show that $g(x)$ has continuous derivatives of any order at $x=0$, and $g^{(n)}(0)=0$ for any $n>0$. The Maclaurin series associated to $g(x)$ is, therefore, identically zero. It follows that the Maclaurin series associated with $g(x)$ does not converge to $g(x)$ for $x>0$.

Definition 5.2. An infinitely differentiable function $f(x)$ is called real-analytic in a neighbourhood of a point $x=a$, if for some positive R the Taylor series (2) associated with $f(x)$ converges to $f(x)$ on $(a-R, a+R)$.

Thus, e^{x} is a real-analytic function, while the function $g(x)$ in Example 5.3 is not real analytic near $x=0$.

Proof of Lagrange's Remainder Theorem. . First note the following version of the Mean Value Theorem: If $f(x)$ and $g(x)$ are continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b) and $g^{\prime}(x) \neq 0$, then there exists a point $c \in(a, b)$ such that

$$
\begin{equation*}
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{9}
\end{equation*}
$$

This can be proved by applying the Mean Value Theorem to the function $h(x)=(f(b)-f(a)) g(x)-$ $(g(b)-g(a)) f(x)$.

Note that the n-th order derivative of $R_{N}(x)$ at $x=0$ vanishes for $n=0,1,2, \ldots, N$. Therefore, if we apply (9) to functions $f(x)=R_{N}(x)$ and $g(x)=x^{N+1}$, then (assume $x>0$ for simplicity) there exists a point $x_{1} \in(0, x)$ such that

$$
\frac{R_{N}(x)}{x^{N+1}}=\frac{R_{N}^{\prime}\left(x_{1}\right)}{(N+1) x_{1}^{N}} .
$$

We now repeat the process and apply (9) to functions $f(x)=R_{N}^{\prime}(x)$ and $g(x)=x^{N}$ on the interval $\left(0, x_{1}\right)$: there is $x_{2} \in\left(0, x_{1}\right)$ such that

$$
\frac{R_{N}^{\prime}\left(x_{1}\right)}{x_{1}^{N}}=\frac{R_{N}^{\prime \prime}\left(x_{2}\right)}{N x_{2}^{N-1}}
$$

Continue the process inductively N times. In the end we get

$$
R_{N}(x)=\frac{x^{N+1}}{(N+1)!} \frac{R_{N}^{(N+1)}\left(x_{N+1}\right)}{x_{N+1}^{N-N}},
$$

where $x_{N+1} \in\left(0, x_{N}\right) \subset \cdots \subset(0, x)$. Now set $c=x_{N+1}$, then $c^{N-N}=1$, and we can write

$$
R_{N}(x)=\frac{R_{N}^{(N+1)}(c)}{(N+1)!} x^{N+1}=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1},
$$

where the last equality follows from the fact that $R_{N}^{(N+1)}(x)=\left(f(x)-T_{N}(x)\right)^{(N+1)}=f^{(N+1)}(x)$, because $T_{N}^{(N+1)} \equiv 0$. This proves the theorem.
Example 5.4. Let $f(x)=(1+x)^{1 / 2}$. Then

$$
f^{(n)}(0)=\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-n+1\right) .
$$

Therefore,

$$
c_{n}=\binom{1 / 2}{n}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!},
$$

and hence

$$
(1+x)^{1 / 2} \sim \sum_{n=0}^{\infty}\binom{1 / 2}{n} x^{n}
$$

is the associated Maclaurin series. This is called the binomial series. Let us try use Lagrange's Remainder Theorem again to determine convergence of the series above. We have

$$
R_{N}(x)=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-N\right)(1+c)^{1 / 2-N}}{(N+1)!} x^{N+1}
$$

for some $c,|c|<|x|$. If $|x|<1$, then clearly $x^{N+1} \rightarrow 0$ as $N \rightarrow \infty$. Also, $\lim _{N \rightarrow \infty}\binom{1 / 2}{N}=0$ (see Exercise 5.3). If $c>0$, then we also have $(1+c)^{1 / 2-N} \rightarrow 0$ as $N \rightarrow \infty$. However, if $c<0$, then $(1+c)^{1 / 2-N}$ does not go to zero, and we cannot be sure that $R_{N}(x)$ goes to zero.

In general, the binomial series converges for $x \in(-1,1)$, and we have

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}, \quad k \in \mathbb{R}, \quad \text { and }|x|<1
$$

Exercises

5.1. Show that the function $g(x)$ in Example 5.3 satisfies $g^{\prime}(0)=0$.
5.2. Use Lagrange's Remainder Theorem to prove that the Maclaurin series of $\cos x$ converges to $\cos x$ for all x.
5.3. Show that for any m,

$$
\lim _{n \rightarrow \infty}\binom{m}{n}=0
$$

