
CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

These lecture notes are designed to provide supplementary material to Stewart, ”Single Variable
Calculus, Sixth Edition, with Early Transcendentals”. More precisely, Section 1 is a complete
replacement of 4.2 of Stewart. It is also a review of continuity and differentiability with the
emphasis on rigourous definitions. This section also provides examples of proving inequalities using
the Mean Value Theorem.

Section 2 of these notes offers some additional material regarding factorization of real polyno-
mials. Although it is not required by the course curriculum, students are encouraged to read and
understand this section at the time when integration using partial fractions is discussed.

Section 3 discusses the definition and basic properties of the Gamma function. It is a fine appli-
cation of improper integrals and integration by parts. This section of the notes can be introduced
after 7.8 in Stewart.

Section 4 is a replacement for 11.1 in Stewart. It emphasizes ǫ − N definition of convergence
of sequences, introduces sup and inf of sets, and gives a proof of the Monotone Convergence and
Squeeze Theorems.

Finally, Section 5 is a replacement for 11.10 of Stewart. Instead of Taylor’s inequality given in
Stewart without proof, Lagrange’s Remainder Theorem is stated and proved. It is used then to
prove that certain Taylor series converge to the corresponding functions. Real analytic functions
are also defined.

After each section, except Section 2, a number of exercises are given. These can be used as part
of homework assignments.

1. Mean Value Theorem

1.1. Review: limit, continuity, differentiability. We denote by R the set of real numbers. A
domain D of R is any subset of R. Typically this will be on open interval (a, b) or a closed interval
[a, b]. A function of a real variable is a function f : D → R, where D is a domain of R.

Definition 1.1 (The ǫ− δ Definition). We say that a function f(x) has a limit L as x approaches
a point x0 and write lim

x→x0

f(x) = L, if for any ǫ > 0 there exists δ > 0 such that whenever

0 < |x − x0| < δ (and x ∈ D) we have |f(x) − L| < ǫ.

The meaning of the above definition is that by choosing a sufficiently small interval (x0−δ, x0+δ)
of the point x0 we can ensure that the values of f(x) on this interval (excluding x0) do not deviate
from L by more than ǫ.

Definition 1.2. We say that a function f : D → R is continuous at a point x0 ∈ D if

(1) lim
x→x0

f(x) = f(x0).

Using the ǫ − δ definition this can be stated as follows: given ǫ > 0, there exists δ > 0 such that
whenever |x − x0| < δ we have |f(x) − f(x0)| < ǫ.
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Figure 1. The graph of sin 1
x

Example 1.1. Let f : R → R be defined as f(x) = x. Let x0 be any real number. Then f(x) is
continuous at x0. Indeed, using the ǫ − δ definition we have |f(x) − f(x0)| = |x − x0| < ǫ. This
inequality can be ensured by taking δ = ǫ. ⋄
Theorem 1.3. If f and g are continuous functions on a domain D, then so are the functions f +g,
f · g, and c · f , where c is any constant. The function f/g is continuous at all points of D where
g 6= 0. Further, if g is a function defined on the range of f , then the function g ◦ f = g(f(x)) is
continuous on D.

Using the above theorem and the fact that f(x) = x is a continuous function as shown in
Example 1.1, we conclude that any polynomial is a continuous function, and any rational function
(the quotient of two polynomials) is continuous at all points where the denominator does not vanish.

Example 1.2. Let

f(x) =

{

0, x 6= 0

1, x = 0
.

Then limx→0 f(x) exists and equals zero, but it differs from the value of f at the origin since
f(0) = 1. Therefore, equation (1) does not hold, and f(x) is not continuous at the origin. However,
letting f(0) = 0 will make this function continuous everywhere. ⋄
Example 1.3. Let

f(x) =

{

sin 1
x , x 6= 0

0, x = 0
.

The function f (see Fig. 1) is defined for all x. It is continuous for all x 6= 0 because it is a
product of continuous functions x and sin 1/x. But f(x) does not have a limit as x → 0 (why?),
and therefore f(x) is not continuous at the origin. Note that there is no choice of f(0) that will
make this function continuous at the origin. ⋄

Example 1.4. Let

f(x) =

{

x sin 1
x , x 6= 0

0, x = 0
.
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Figure 2. The graph of x sin 1
x

This function (see Fig. 2) is continuous everywhere. To prove the continuity at the origin, let us
verify the ǫ − δ definition. We have

|f(x) − f(0)| =

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

< ǫ.

Since |x sin 1
x | < |x| for all x 6= 0, we have

|f(x) − f(0)| =

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

< |x| < ǫ,

and so we may take δ = ǫ. Intuitively, lim
x→0

x sin
1

x
= 0 because sin 1

x is bounded between −1 and 1,

whereas x approaches zero. ⋄
Definition 1.4. Let f(x) be defined on an interval D ⊂ R. Let x0 ∈ D. We say that f(x) is
differentiable at x0 if the limit

(2) lim
h→0

f(x0 + h) − f(x0)

h

exists. The value of the limit is defined to be f ′(x0), the derivative of f at x0.

Example 1.5. Let

f(x) =

{

x sin 1
x , x 6= 0

0, x = 0
.

This function is continuous but not differentiable at the origin. The continuity was shown in
Example 1.4. As for nondifferentiability, we have

lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

h sin 1
h

h
= lim

h→0
sin

1

h
,

which does not exist. ⋄
Example 1.6. Let

f(x) =

{

x2 sin 1
x , x 6= 0

0, x = 0
.
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Figure 3. The graph of x2 sin 1
x

This function (see Fig. 3) is continuous everywhere because it is the product of continuous
functions x and x sin 1/x (as discussed in Example 1.4). To prove differentiability of this function
at the origin let us compute the corresponding limit in (2).

lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

h2 sin 1
h

h
= lim

h→0
h sin

1

h
.

As we saw in Example 1.4 this limit equals 0. Thus f ′(0) = 0. ⋄
1.2. Mean Value Theorem.

Definition 1.5. Suppose f(x) is a function defined on a domain D. The function f(x) is said to
have an absolute (global) maximum at a point c ∈ D, if f(c) ≥ f(x) for all x ∈ D. The number
f(c) is called the absolute (global) maximum value of f on the domain D. The function f has an
absolute (global) minimum at c ∈ D, if f(c) ≤ f(x) for all x ∈ D. The number f(c) is called the
absolute (global) minimum value of f on the domain D.

Theorem 1.6. If f(x) is continuous on a closed interval [a, b], then f(x) attains a maximum and
a minimum value.

The above theorem can be proved using the Axiom of Completeness for real numbers which will
be stated when we discuss sequences.

Definition 1.7. The function f defined on a domain D has a local maximum at a point c ∈ D, if
there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≥ f(x) for all x ∈ I. The function f has
a local minimum at c ∈ D, if there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≤ f(x) for
all x ∈ I.

Maxima and minima are called extreme points, or extrema.

Lemma 1.8. Let f(x) be a differentiable function on an interval (a, b). Suppose x0 ∈ (a, b). If
f ′(x0) > 0, then for x < x0 close to x0 we have f(x) < f(x0), and f(x) > f(x0) for x > x0 and
close to x0.

The lemma above simply states that if f ′(x0) > 0, then f(x) is an increasing function near x0.
A similar statement holds if we assume that f ′(x0) < 0 (see Exercise 1.2).
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Proof. By definition,

f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0
.

If f ′(x0) > 0, then there exists a small interval (x0 − δ, x0 + δ) such that

f(x) − f(x0)

x − x0
> 0, for x 6= x0.

Suppose first that x0 < x < x0 + δ. Then x − x0 > 0, and from the above inequality we conclude
that f(x) − f(x0) > 0, or f(x) > f(x0). Now, if x0 − δ < x < x0, then x − x0 < 0, and the same
inequality shows that f(x) < f(x0). ¤

Theorem 1.9 (Fermat’s Theorem). 1 Let f(x) be defined on an interval [a, b], and suppose that
f(x) attains a maximal (or minimal) value at a point c ∈ (a, b). If f(x) is differentiable at x = c,
then f ′(c) = 0.

Proof. We will assume that c is a maximum of f(x), the case when c is a minimum can be treated
in a similar way. Arguing by contradiction, suppose that f ′(c) 6= 0. Then either f ′(c) > 0 or
f ′(c) < 0. If f ′(c) > 0, then Lemma 1.8 implies that f(x) > f(c) for x > c with x sufficiently close
to c. Similarly, if f ′(c) < 0, then f(x) > f(c) for x < c. In both cases we see that f(c) cannot be
the maximum value of the function f . This contradiction proves the theorem. ¤

Geometrically, Fermat’s theorem states that at extreme points the tangent line to the graph of
the function f is horizontal, which should be intuitively clear. Also note, that if a maximal or a
minimum value is attained at the end point of the interval [a, b], then Fermat’s theorem need not
to hold.

Definition 1.10. A point c is called a critical point of a differentiable function f(x) if f ′(c) = 0.

Fermat’s theorem now can be stated as follows: if c is a local maximum or minimum of a function
f(x), then c is a critical point of f . The converse to this statement is false: if f ′(c) = 0, then it
does not follow in general that c is a local maximum or a local minimum of f(x). For example, if
f(x) = x3, then f ′(0) = 0, but the origin is not an extreme point of x3.

Theorem 1.11 (Rolle’s Theorem). 2 Suppose f(x) is continuous on the interval [a, b] and differ-
entiable on (a, b), and f(a) = f(b). Then there exists a number c ∈ (a, b) such that f ′(c) = 0.

Proof. By Theorem 1.6, a continuous function on a closed interval [a, b] attains its maximum value,
say, M , and its minimum value, say, m. Consider two cases:

1. Suppose M = m. Then f(x) on [a, b] is a constant function, since m ≤ f(x) ≤ M = m for all
x ∈ [a, b]. Therefore, f ′(x) = 0 for all x.

2. Suppose M > m. Since f(a) = f(b), we know that either M or m is attained at some point
c inside the interval (a, b), (i.e., not at the end points of the interval). In this case, it follows from
Fermat’s theorem that f ′(c) must be zero. ¤

Geometrically, Rolle’s theorem states that if f(a) = f(b), then there is a point c between a and
b such that the tangent line to the graph of f at point c is horizontal. This occurs at a local
maximum or a local minimum of f(x).

1This is a modern formulation of the theorem. It captures the essence of Fermat’s method for finding maximal
and minimal values of a function. The notion of derivative was not yet developed at Fermat’s time.

2Despite the name, Rolle only suggested this result for polynomials.
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Theorem 1.12 (Mean Value Theorem). Suppose that f(x) is continuous on [a, b] and differentiable
on (a, b). Then there exists a point c ∈ (a, b) such that

f(b) − f(a)

b − a
= f ′(c).

Proof. Define an auxiliary function

F (x) = f(x) − f(a) − f(b) − f(a)

b − a
(x − a).

This function satisfies the conditions of Rolle’s theorem. Indeed, it is continuous on [a, b], because
it is a difference of a continuous function f(x) and a linear (hence continuous!) function

f(a) − f(b) − f(a)

b − a
(x − a).

On the interval (a, b), we have

F ′(x) = f ′(x) − f(b) − f(a)

b − a
.

Finally, F (a) = f(a)− f(a) = 0, and F (b) = f(b)− f(a)− f(b)−f(a)
b−a (b− a) = f(b)− f(a)− (f(b)−

f(a)) = 0, and so F (a) = F (b).
Therefore, we may apply Rolle’s theorem to the function F (x), and so there exists a point

c ∈ (a, b) such that F ′(c) = 0. This means that

f ′(c) − f(b) − f(a)

b − a
= 0.

This implies

f ′(c) =
f(b) − f(a)

b − a
,

which is exactly what we wanted to prove. ¤

1.3. Proving inequalities. The Mean Value Theorem can be used for proving inequalities.

Example 1.7. Prove that if x > 0, then

ln(1 + x) < x.

Solution. Let a = 0, b = x, and f(x) = ln(1 + x) − x. Then f ′(x) = 1
1+x − 1 = − x

1+x . By the

Mean Value Theorem applied to the function f on the interval [a, b] = [0, x], there exists a point
c ∈ (0, x) such that

f ′(c) =
f(x) − f(0)

x − 0
,

or

(3) − c

1 + c
=

ln(1 + x) − x

x
.

Note that c > 0, and therefore, − c
1+c < 0. Therefore, equation (3) implies

ln(1 + x) − x

x
< 0.

Since x > 0, the numerator in the above inequality must be negative, i.e.,

ln(1 + x) − x < 0,

which is what we had to prove. ⋄
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Example 1.8. Prove that if x > 0, and n > 1, then

(1 + x)n > 1 + nx.

Solution. Let a = 0, and b = x, and f(x) = (1 + x)n − (1 + nx). Then f ′(x) = n(1 + x)n−1 − n,
and by the Mean Value Theorem, we have

(4) n(1 + c)n−1 − n =
(1 + x)n − (1 + nx) − 0

x

for some c ∈ (0, x). Note that 1 + c > 1, and for n > 1, we have (1 + c)n−1 > 1. Therefore,

n(1 + c)n−1 − n > 0.

From this and equation (4) we conclude that

(1 + x)n − (1 + nx)

x
> 0.

Since x > 0, this yields the desired inequality. ⋄

Exercises

1.1. Show that the function in Example 1.6 does not have the second order derivative at x = 0.
1.2. Formulate and prove a statement similar to Lemma 1.8 for the case when f ′(x0) < 0.
1.3. Give an example of a function which is defined on the closed interval [0, 1] but is not

bounded there.
1.4. Give an example of a function which is continuous on the interval (−∞, 0] but does not

attain global maximum and global minimum.
1.5. On the interval (0, 2) there exists a point c such that the tangent line to the graph of the

function y = x3 at the point (c, c3) is parallel to the straight line passing through the points
(0, 0) and (2, 8).

(i). Explain without calculations why such point c necessarily exists.
(ii). Find c.

1.6. Prove that if a nonconstant function f(x) is continuous on the interval [a, b] and differen-
tiable on (a, b), then there exist points x1 and x2 on the interval (a, b) such that f ′(x1) < 0
and f ′(x2) > 0.

In the next problems prove the given inequality using the Mean Value Theorem.

1.7. 2
√

x > 3 − 1

x
, for x > 1.

1.8. sinx < x, for x > 0.

1.9. cos x > 1 − x2

2
, for x > 0.

1.10. sinx > x − x3

6
, for x > 0.

1.11. tanx > x, for 0 < x < π
2 .

1.12. ex > 1 + x, for x > 0.

1.13. ex > 1 + x +
x2

2
, for x > 0.
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1.14. ex > 1 + x +
x2

2
+ · · · + xn

n!
, for x > 0. (Hint: use mathematical induction)

2. Factorization of Polynomials

2.1. Complex Polynomials. The set R of real numbers can be extended to a bigger set of the
so-called complex numbers. This is done by introducing a single imaginary number i =

√
−1.

Complex numbers can be written in the form z = a + ib, where a, b ∈ R. In this representation a is
called the real part of z, and b the imaginary part of z, denoted respectively by Re z and Im z. Real
numbers can be viewed as a subset of complex numbers with zero imaginary part. Thus, denoting
the space of complex numbers by C, we have the following chain of inclusions

N ⊂ Q ⊂ R ⊂ C.

We may extend the definition of arithmetic operations on real numbers to the space of complex
numbers as follows:

(i) (a + ib) + (a′ + ib′) = (a + a′) + i(b + b′)
(ii) (a + ib) · (a′ + ib′) = (aa′ − bb′) + i(ab′ + a′b)

(iii)
a + ib

a′ + ib′
=

aa′ + bb′

a′2 + b′2
+

ba′ − ab′

a′2 + b′2
i, if a′ + b′i 6= 0 = 0 + i0.

One can verify that when b = b′ = 0, the above formulas provide the usual operations of addition,
multiplication and division for reals. Note that i · i = i2 = −1, which in particular means that the
equation z2 + 1 = 0 over the set of complex numbers has two complex roots: i and −i. This is in
contrast with reals over which this equation has no solution.

With these operations on complex numbers we may define complex polynomials as functions on
complex numbers defined by

(5) P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, where aj ∈ C.

If a0 6= 0, the n is called the degree of P (z). In particular, if we ignore the choice of the letter
for the unknown variable (x vs. z), the usual polynomials with real coefficients are examples of
complex polynomials. (In other words, a polynomial is called real if in (5), aj ∈ R for all j.) The
following theorem is usually known as the Fundamental Theorem of Algebra.

Theorem 2.1. Suppose P (z) is a complex polynomial of degree n > 0. Then P (z) has exactly n
complex roots.

In this theorem the number of roots should be counted with multiplicity, in other words, some
roots may have to be counted more than once. For example, z2 + 2z + 1 = (z + 1)2 = 0 has two
roots both of which are z = −1. In general, if w1, w2, . . . , wm are the distinct roots of a polynomial
P (z), then we can write

(6) P (z) = a0(z − w1)
k1(z − w2)

k2 . . . (z − wm)km .

This is called a factorization of a complex polynomial into complex linear factors. It is unique up
to a change of order. The exponent kj is called the multiplicity of the root wj . The Fundamental
Theorem of Algebra implies that k1 + k2 + · · · + km = n. The proof of Theorem 2.1 requires
some knowledge of complex analysis, a branch of mathematics that studies functions of complex
variables.
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Example 2.1. Consider the equation f(z) = z4 +z2 = 0. According to the Fundamental Theorem
of Algebra, f(z) has four roots. These can be easily found. Indeed, z4 + z2 = z2(z2 + 1). Thus the
roots are z = 0 (counted twice), z = i and z = −i. So

f(z) = z2(z − i)(z + i)

is a factorization of this polynomial into linear factors. ⋄
Note that not every real polynomial admits a factorization into real linear factors (e.g., x2 + 1).

2.2. Factorization of Real Polynomials. An important operation on complex numbers is com-
plex conjugation, or just conjugation, which is denoted by a horizontal bar, and defined as follows:

a + ib = a − ib.

In other words, to conjugate a complex number we simply change the sign of the imaginary part
of the number. Note that if z is a real number, then z = z, i.e., conjugation leaves real numbers
unchanged.

Let w = a + ib be a complex number. Then w = a − ib. Consider the expression(z − w)(z − w).
Then

(7) (z − w)(z − w) = z2 − wz − wz + ww = z2 − (w + w)z + ww.

We have w + w = (a + ib) + (a − ib) = 2a, and ww = (a + ib)(a − ib) = a2 + b2. Both are real
numbers. Thus the product of two monomials as above with conjugate free terms yields a degree
two polynomial with real coefficients.

Suppose now

(8) P (z) = zn + b1z
n−1 + · · · + bn−1z + bn, where bj ∈ R,

is a polynomial of degree n with real coefficients, and let ζ be a complex root of P (z). Then

ζn + b1ζ
n−1 + · · · + bn−1ζ + bn = 0.

Conjugation of both sides of this equation gives

ζ
n

+ b1ζ
n−1

+ · · · + bn−1ζ + bn = 0.

Note that coefficients bj did not change because conjugation does not change real numbers. We
also used here the fact that for z, w ∈ C, we have z + w = z + w, and z · w = z · w, which can be
verified directly. What the last equation tells us is that ζ is also a root of P (z). In other words, if
ζ is a complex root of P (z) and ζ is not a real number, then ζ is also a root of P (z). Thus we may
write

(9) P (z) = (z − x1)(z − x2) · · · (z − xm)(z − z1)(z − z1) · · · (z − zk)(z − zk),

where x1, . . . , xm are the real roots of P (x), and z1, z1, . . . , zk, zk are the pairs of complex roots and
their conjugates. Using the calculation in (7) we have

(z − z1)(z − z1) = z − A1z + B1, where A1 = 2Re z1, and B1 = (Re z1)
2 + (Im z1)

2,

and similarly for the other pairs of complex conjugate roots of P (z). Using this, and replacing z
with x in (9) yields

P (x) = (x − x1)(x − x2) · · · (x − xm)(x2 − A1x + B1)(x
2 − A2x + B2) · · · (x2 − Akx + Bk),

where all the coefficients are real numbers. Thus, we proved the following theorem.

Theorem 2.2. Suppose P (x) is a real polynomial of degree n > 0. Then P (x) admits factorization
into a product of linear and quadratic factors with real coefficients.
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This theorem is used in the theory of integration of rational functions using partial fractions.

Example 2.2. Let P (x) = x4 + 1. This polynomial does not have any real roots. Nevertheless,
according to Theorem 2.2, it can be factored into a product of two real polynomials. But what
are these? One possible solution would be to find complex roots of P (z) and then to multiply
the conjugate monomials as discussed above. However, finding complex roots is not an easy task.
Instead, we can try to factorize P (z) into two polynomials x2 + ax + 1 and x2 + bx + 1 for some
a, b ∈ R. We get

(x2 + ax + 1)(x2 + bx + 1) = x4 + ax3 + x2 + bx3 + abx2 + bx + x2 + ax + 1.

We set this equal to x4 + 1 and compare the coefficients of x3, x2, and x. It follows that a = −b
and ab = −2. So we may take a =

√
2 and b = −

√
2. This gives the required factorization:

x4 + 1 = (x2 +
√

2 x + 1)(x2 −
√

2 x + 1).

⋄

3. The Gamma function

The Gamma function Γ(x) is defined as an improper integral

(10) Γ(x) =

∫ ∞

0
tx−1e−tdt.

This function brings together integration by parts and improper integrals. It can be seen as a
solution to the following interpolation problem: find a smooth curve that connects the points (x, y)
in the plane given by y = 1 · 2 · 3 · · · · · x = x! at the positive integer values for x.

A plot of the first few factorials (see Fig 1.) makes clear that such a curve can be drawn, but it
would be preferable to have a formula that precisely describes the curve, in which the number of
operations does not depend on the size of n. The formula for the factorial n! cannot be used directly
for fractional values of n since it is only valid when n is a positive integer. There is, in fact, no such
simple solution for factorials. Any combination of sums, products, powers, exponential functions
or logarithms with a fixed number of terms will not suffice to express n!. But it is possible to find a
general formula as an integral depending on a parameter. This was discovered by L. Euler in 1729.3

First consider the case x = 1. We have

Γ(1) =

∫ ∞

0
e−tdt = lim

s→∞

∫ s

0
e−tdt = lim

s→∞
−e−t

∣

∣

∣

s

0
= 1.

Further, using integration by parts, one can show that Γ(n + 1) = n · Γ(n). Indeed, for an integer
n ≥ 1,

Γ(n + 1) =

∫ ∞

0
tn+1−1e−tdt =

∫ ∞

0
tne−tdt.

Consider the indefinite integral
∫

tne−tdt. We apply integration by parts by choosing u = tn, and
dv = e−tdt. Then du = n tn−1dt and v = −e−t. According to the integration by parts formula, we
have

∫

tne−tdt = −tn e−t −
∫

−e−tn tn−1dt = −tn e−t + n

∫

tn−1e−tdt.

3The symbol Γ(x) and the name were proposed in 1814 by A.M. Legendre.
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Figure 4. Interpolating n!

Thus,

(11)

∫ ∞

0
tne−tdt = lim

s→∞

[

−tn e−t

∣

∣

∣

∣

s

0

+ n

∫ s

0
tn−1e−tdt

]

For the first term inside the limit above we get

lim
s→∞

(−tn

et

)∣

∣

∣

∣

s

0

= lim
s→∞

−sn

es
.

Using L’Hôpital’s Rule n times we see that

lim
s→∞

sn

es
= lim

s→∞

n! s0

es
= 0.

For the second term in the right hand side of (11) we have

lim
s→∞

n

∫ s

0
tn−1e−tdt = nΓ(n).

Combining everything together we have Γ(n + 1) = nΓ(n). This identity provides a reduction
formula which can be used to compute inductively the values of the Gamma function for positive
integers:

Γ(n + 1) = n! where n ∈ N.

Indeed, Γ(2) = 1; Γ(3) = Γ(2 + 1) = 2 · Γ(2) = 2; Γ(4) = Γ(3 + 1) = 3 · Γ(3) = 3 · 2, etc.
In fact, by inspection we see that our application of the integration by parts formula is valid not

only for integer values n, but for all real x > 0 (see Exercises 3.1 and 3.2 for the case 0 < x < 1),
and so we have

(12) Γ(x + 1) = xΓ(x) for all x > 0.

The graph of the Gamma function is given on Figure 5.

Exercises

3.1. For x ≥ 1 the above calculations show the convergences of the improper integral that defines
the Gamma function. However, if x < 1, then the integral in (10) contains a negative power
of t (x− 1 becomes negative). Use the comparison test for improper integrals to show that
the Gamma function is well-defined for 0 < x < 1. (Hint: split the integral in (10) into
two integrals.)
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Figure 5. The graph of Γ(x)

3.2. Verify formula (12) for the case when 0 < x < 1.
3.3. Show that the integral in (10) diverges if x ≤ 0.
3.4. The integral

∫ ∞

−∞
e−x2

dx =
√

π

is called the Gaussian integral. It is particularly important in probability theory and
statistics. Use the value of this integral to evaluate Γ(1/2).

3.5. Use Problem 3.4 to calculate Γ(5/2).
3.6. Prove that limx→0+ Γ(x) = +∞.

4. Sequences

4.1. Convergence of sequences.

Definition 4.1. A sequence s is a function s : N → R. It can be thought of as a list of numbers

s1, s2, s3, . . . ,

where sn = s(n) for n ∈ N.

Example 4.1.

(i) {sn} =
{

1, 1
2 , 1

3 , . . .
}

. The corresponding function s : N → R is given by s(n) = 1
n .

(ii) Let

{sn} =

{

1

2
,

1

6
,

1

12
,

1

20
, . . .

}

.

Here s(n) = 1
n·(n+1) .

(iii) {sn} = {1,−1, 1,−1, 1,−1 . . . }. For this sequence we can take, for example, sn = (−1)n+1.

⋄
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A sequence is defined inductively (or recursively) if sn = f(s1, . . . sn−1), i.e., each term of the
sequence is defined as a function of previously defined terms.

Example 4.2. (Fibonacci sequence4.) By definition, the first two terms of the Fibonacci sequence
{fn} are 1 and 1, and each consequent number is the sum of the previous two. Inductively this can
be defined as follows.

f1 = f2 = 1, fn = fn−1 + fn−2, for n > 2.

The first several terms of the Fibonacci sequence can be easily computed to be

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

⋄
Example 4.3. s1 =

√
2, sn =

√

2 + sn−1 for n > 1. Then

s1 =
√

2, s2 =

√

2 +
√

2, s3 =

√

2 +

√

2 +
√

2, s4 =

√

2 +

√

2 +

√

2 +
√

2, . . .

⋄
Definition 4.2. A sequence {sn} converges to a real number L if for every positive number ǫ, there
exists an N ∈ N such that whenever n > N it follows that |sn − L| < ǫ. In this case we write

lim
n→∞

sn = L.

If {sn} does not converge, it is said to diverge.

The above definition is sometimes called the ǫ-N definition of convergence of a sequence.

Example 4.4. lim
n→∞

1√
n

= 0.

To prove this, set sn = 1√
n
, and L = 0. We need to show that given any ǫ > 0, there exists an

index N > 0 such that |sn − L| = |1/
√

n| < ǫ for n > N . The inequality 1/
√

n < ǫ is equivalent to
n > 1/ǫ2. By taking N = ⌈1/ǫ2⌉, we ensure that if n > N , then |1/

√
n| < ǫ. (Recall that ⌈x⌉ is

the ceiling function; it equals the smallest integer bigger than or equal to x.) ⋄

Using a similar argument one can show that lim
n→∞

1

np
= 0 for p > 0 (Exercise 4.1(i)).

Example 4.5. lim
n→∞

n + 1

n
= 1.

Let sn = n+1
n , and L = 1. Then

|sn − L| =

∣

∣

∣

∣

n + 1

n
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n

∣

∣

∣

∣

< ǫ,

and therefore, the choice of N = ⌈1/ǫ⌉ will ensure that |sn − L| < ǫ. ⋄

Example 4.6. lim
n→∞

(

1

2

)n

= 0.

Set sn =
(

1
2

)n
, L = 0. Then

∣

∣

∣

∣

(

1

2

)n∣

∣

∣

∣

< ǫ ⇐⇒ n ln(1/2) < ln ǫ ⇐⇒ n >
ln ǫ

ln(1/2)
.

4The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius
Bonaccio, ”son of Bonaccio”). Fibonacci’s 1202 book Liber Abaci introduced the sequence to Western European
mathematics, although the sequence had been previously described in Indian mathematics.
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Note that ln(1/2) < 0, and so division by this number reverses the inequality. We could take
N = ⌈ ln ǫ

ln(1/2)⌉, but then N becomes negative for ǫ > 1. So a better choice is

N = max

{⌈

ln ǫ

ln(1/2)

⌉

, 1

}

⋄
Definition 4.3. lim

n→∞
sn = ∞ means that for any real number M there exists an N ∈ N such that

sn > M whenever n ≥ N .

Example 4.7. The Fibonacci sequence diverges to infinity. Indeed, starting with n = 5 we see
that fn ≥ n. Therefore, given any number M > 0, fn > M for all n > ⌈M⌉. ⋄
Example 4.8. Investigate convergence of {rn} for different values of r > 0.

Suppose r > 1. Then if M > 0 is arbitrary, the inequality rn > M is satisfied for n >
lnM

ln r
. Thus

rn diverges to infinity if r > 1. If r = 1, then rn is a constant sequence 1, hence converges to 1.

Finally, if 0 < r < 1, then lim
n→∞

rn = 0. Indeed, given ǫ > 0, for n > max

{

ln ǫ

ln r
, 1

}

the inequality

rn < ǫ holds. ⋄
4.2. Properties of sequences. The following theorem provides a convenient way of calculating
the limit by reducing the problem to algebraic manipulation of existing limits. It can be proved
directly using the ǫ-N definition of convergence.

Theorem 4.4 (Algebraic Limit Theorem). If lim an = A, lim bn = B, then
(i) lim(can) = cA for c ∈ R,
(ii) lim(an + bn) = A + B,
(iii) lim(an · bn) = A · B,

(iv) lim

(

an

bn

)

=
A

B
, if bn 6= 0 and B 6= 0.

Example 4.9. Examples of use of the Algebraic Limit Theorem.

1. lim
n→∞

5n − 3n2

2n2 + (−1)n
= lim

n→∞

5/n − 3

2 + (−1)n

n2

= −3

2
. Here we use the result of Exercise 4.1(i) and

also the fact that lim
n→∞

|an| = 0 implies lim
n→∞

an = 0, which follows directly from the ǫ-N

definition of convergence.

2. lim
n→∞

n lnn

(n + 1)2
= lim

n→∞

n

n + 1
· lim
n→∞

lnn

n + 1
= 1 · lim

n→∞

1/n

1
= 0. Here we used l’Hôpital’s rule.

⋄
A useful reduction for computing limits of sequences is the following: if f is a continuous function

and {sn} is a sequence that converges to limit L, then lim
n→∞

f(sn) = f(L). Using this fact, one can

prove that if a sequence is defined by an inductive formula

(13) sn+1 = f(sn),

where f is a continuous function, then assuming that the limit L of the sequence {sn} exists, it can
be often found by taking the limit in (13): L = f(L). Observe that lim sn = lim sn+1 = L.

Example 4.10. Let {sn} be defined inductively by s1 = 1, and

(14) sn+1 =
2sn + 3

4
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Assume that the limit of {sn} exists, say, lim
n→∞

sn = L. Then we can take the limit as n → ∞ on

both sides of (14). We get

lim
n→∞

sn+1 = lim
n→∞

2sn + 3

4
.

it follows that

L =
2L + 3

4
, so L = 3/2.

Hence, lim sn = 3/2. ⋄
If a priori it is not known that the limit of {sn} exits, then the calculation of L from equation

(13) may produce unpredictable results, see Exercise 4.4 for details. Thus, justification of existence
of the limit becomes an important problem on its own.

Theorem 4.5 (Squeeze Theorem). If an ≤ bn ≤ cn for n > n0 and

lim
n→∞

an = lim
n→∞

cn = L,

then lim
n→∞

bn = L.

Proof. Take any ǫ > 0. We need to find N > 0 such that |bn − L| < ǫ whenever n > N . Since
an → L, there is N1 > 0 such that for n > N1 we have |an − L| < ǫ. An equivalent form of this
inequality is

L − ǫ < an < L + ǫ.

Similarly, since cn → L, there is N2 > 0 such that |cn − L| < ǫ for n > N2, or

L − ǫ < cn < L + ǫ.

Take N = max{N1, N2}. Then for n > N we have

L − ǫ < an ≤ bn ≤ cn < L + ǫ,

which implies that |bn − L| < ǫ. ¤

Example 4.11. lim
n→∞

5n

nn
= 0.

To prove this we use the Squeeze Theorem. Indeed, for n > 6,

0 <
5n

nn
=

(

5

n

)n

<

(

5

6

)n

.

We may take an = 0, bn =
5n

nn
, and cn =

(

5

6

)n

. Since lim
n→∞

(

5

6

)n

= 0 by Example 4.8, the Squeeze

Theorem implies that lim
n→∞

5n

nn
= 0. ⋄

Definition 4.6. A sequence {sn} is called increasing if sn+1 ≥ sn for all n, strictly increasing if
sn+1 > sn for all n. Decreasing and strictly decreasing sequences are defined similarly. Decreasing
and increasing sequences are called monotone sequences.

Example 4.12.

{

n

n2 + 1

}

is a decreasing sequence. This can be proved either by verifying the

inequality
n + 1

(n + 1)2 + 1
≥ n

n2 + 1
for all n, or by showing that that function f(x) =

x

x2 + 1
has a

negative derivative for x > 1. ⋄



16 RASUL SHAFIKOV

4.3. Least upper bound, monotone convergence.

Definition 4.7. An upper bound of a non-empty subset S of R is a number b such that b ≥ s,
for any s ∈ S. A number l is a least upper bound or supremum of S, denoted by sup S, if l is an
upper bound of S, and if b is another upper bound of S then l ≤ b.

Example 4.13.

(1) S1 = {0, 1/2, 2/3, 3/4, . . . }. Then supS1 = 1.
(2) S2 = N. This set is unbounded, and therefore, the upper bound for this set does not exist.
(3) Let

S3 = {sinn, n ∈ N} = {sin 1, sin 2, sin 3, . . . }.
This set is bounded above by 1, since sinx ≤ 1 for any x. But is there supS3? If n could
attain any real value, then since sin(π

2 + 2πk) = 1, the supremum would be 1. However,
since n ∈ N, sinn 6= 1 for any n. Therefore, if supS3 exists, in order to find it, one needs
to investigate how close a natural number n can come to the set of numbers of the form
π
2 + 2πk, k ∈ N.

⋄
Lower bound and greatest lower bound (infimum) are defined similarly.

Definition 4.8. A sequence {sn} is bounded above (below) if the set

{sn; n ∈ N} = {s1, s2, s3, . . . }
has an upper (lower) bound.

Axiom of Completeness. Every nonempty set of real numbers that has an upper bound, has a
least upper bound.

The Axiom of Completeness distinguishes real numbers from rational numbers. For example,
the set S = {x ∈ R : x2 < 2} has a least upper bound

√
2. However, the set of rational numbers r,

such that r2 < 2, is bounded, but it does not have a least upper bound in Q (
√

2 is not rational!).
Thus, the Axiom of completeness is false for rationals.

Let us return to Example 4.13(3). Since the set S3 is bounded above by 1, the Axiom of
Completeness guarantees that S3 has a supremum, although it is a non-trivial problem to determine
what it is.

Theorem 4.9 (Monotone Convergence Theorem). Every bounded monotone sequence converges.

Proof. Consider the case when {sn} is an increasing sequence bounded above. Since the set S =
{sn; n ∈ N} is bounded, by the Axiom of Completeness, there exists l = supS. We claim that l is
the limit of {sn}. Indeed, take any ǫ > 0. Then since l is the supremum of S, there exits an index
N such that sN > l − ǫ. But since the sequence is increasing, we have sn > l − ǫ for all n > N .
This means that |l − sn| < ǫ for n > N , which proves that lim sn = l.

The case when {sn} is decreasing and bounded below can be proved in a similar way. ¤

Example 4.14. Consider the sequence defined in Example 4.3. We may use induction to show
that sn < 2 for all n. Indeed, s1 =

√
2 < 2. If sn < 2, then 2 + sn < 4. Taking the square root on

both sides, we get
√

2 + sn < 2, which means that sn+1 < 2. This shows that the inequality sn < 2
holds for all n.

Further, {sn} is increasing. Indeed, sn <
√

2 + sn is equivalent to s2
n − sn − 2 < 0, which holds

true for −1 < sn < 2. By the previous paragraph sn < 2, and therefore, sn < sn+1 for all n.
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Thus, {sn} is a bounded monotone sequence, and by the Monotone Convergence Theorem {sn}
converges. The limit L can be found by taking the limit as n → ∞ on both sides of sn =

√
sn + 2.

We have

L =
√

2 + L =⇒ L2 − L − 2 = 0.

This equation has two roots: −1 and 2. Since sn > 0 for all n, L = 2. ⋄

Exercises

4.1. Using only Definition 4.1 prove

(i) limn→∞
1

np
= 0, p > 0.

(ii) limn→∞
1 + 2n

5 + 3n
=

2

3
.

(iii) limn→∞
sinn

n + 1
= 0.

4.2. Give the definition of divergence of a sequence without referring to converge of a sequence.
Use your definition to show that the sequence sn = (−1)n + 1

n diverges.

4.3. Give a definition of limn→∞ sn = −∞. Use your definition to verify that lim loga n = −∞
for 0 < a < 1.

4.4. Let the sequence {sn} be defined inductively as s1 = 1, and sn+1 = sn
2 − 1 for n > 1.

Compute L using the ideas of Example 4.10, and then show that this L cannot be the limit
of the sequence sn.

4.5. Use the Squeeze Theorem to find lim
n→∞

sinn + cos n√
n

.

4.6. Determine without proof supS, the supremum of the set S given by

S =

{

n

n + m
, where n, m ∈ N

}

.

4.7. Prove that if a sequence {sn} converges, then the set S = {s1, s2, . . . } is bounded.

4.8. Let {sn} be defined as s1 = 0.3, s2 = 0.33, s3 = 0.333, .... . Prove that {sn} converges.

4.9. Let {fn} be the Fibonacci sequence as defined in Example 4.2. Consider a sequence

s1 = 1, sn =
fn+1

fn
for n > 1.

Assume that sn converges. Find its limit.

4.10. Show that the sequence {xn} defined by x1 = 3, xn+1 = 1
4−xn

for n > 1, converges. Then
find the limit.
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5. Taylor Series

Let f(x) be a function that has derivatives of all orders on the interval (a − R, a + R) for some
a ∈ R, and R > 0. Suppose that f(x) can be represented on (a − R, a + R) by a convergent power
series

(15)
∞

∑

n=0

cn(x − a)n.

This means that for any x ∈ (a − R, a + R), the series (15) converges to f(x). Then by direct

differentiation of the power series (15), we see that f (n)(a) = n! cn, for all n > 0 (here f (n) denotes
the derivative of f(x) of order n). From this we conclude that

cn =
f (n)(a)

n!
,

and thus the series in (15) becomes

(16)
∞

∑

n=0

f (n)(a)

n!
(x − a)n = f(a) + f ′(a)(x − a) +

f ′′(a)

2!
(x − a)2 + . . .

This is called the Taylor series centred at x = a associated with f(x). If a = 0, then (16) becomes

(17)
∞

∑

n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + . . . ,

which is called the Maclaurin series associated with f(x).

Example 5.1. Let P (x) be a polynomial of degree N ,

P (x) = c0 + c1x + c2x
2 + · · · + cNxN .

By inspection, cn =
P (n)(0)

n!
for n = 1, . . . N , and cn = 0 for n > N . Thus, the Maclaurin series

associated with P (x) is exactly P (x).

In general, however, one cannot immediately conclude that the Taylor or Maclaurin series asso-
ciated with a function f(x) converges to f(x). In fact, it is not even clear whether the Taylor series
of a given function converges at all. (Note that when we derived (16) we assumed to begin with
that f(x) has a power series representation.) Define the Taylor polynomial to be

(18) TN (x) =
N

∑

n=0

f (n)(a)

n!
(x − a)n = f(a) + f ′(a)(x − a) + · · · + f (N)(a)

N !
(x − a)N ,

i.e., T (x) is simply the order N partial sum of the Taylor series (16). Thus, by the definition of
convergence, in order to show the convergence of the Taylor series to f(x) we need to show that

(19) lim
N→∞

TN (x) = f(x)

for all x on some interval. If we define the remainder of the Taylor series to be

(20) RN (x) =
∞

∑

n=0

f (n)(a)

n!
(x− a)n − TN (x) =

f (N+1)(a)

(N + 1)!
(x− a)N+1 +

f (N+2)(a)

(N + 2)!
(x− a)N+2 + . . . ,

then proving (19) is equivalent to showing

RN (x) → 0, as N → ∞.
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The following theorem provides a useful tool for proving convergence of Taylor series. For

simplicity, we consider the case when a = 0. Then TN (x) = f(0) + f ′(0)x + . . . f (N)(0)
N ! xN , and

R(x) = f (N+1)(0)
(N+1)! xN+1 + . . . .

Theorem 5.1 (Lagrange’s Remainder Theorem). Let f be infinitely differentiable on (−R, R).
Then there exists a number c satisfying |c| < |x| such that

(21) RN (x) =
f (N+1)(c)

(N + 1)!
xN+1.

Example 5.2. Let f(x) = ex. Then f (n)(0) = e0 = 1 for all n. Therefore, cn = 1
n! , and we have

ex ∼
∞

∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

The remainder of order N of this Maclaurin series is

RN =
xN+1

(N + 1)!
+

xN+2

(N + 2)!
+ . . . .

According to Lagrange’s Remainder Theorem, there is a number c, |c| < |x|, such that

RN (x) =
f (N+1)(c)

(N + 1)!
xN+1 =

ec

(N + 1)!
xN+1.

For any fixed x, RN (x) → 0, since for any x, xn

n! → 0 as n → ∞. Thus

ex =
∞

∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

for all x ∈ R.

Example 5.3. Let

(22) g(x) =

{

e−1/x2
, if x > 0

0, if x ≤ 0

Since e−1/x2
approaches 0 as x → 0, the function g(x) is continuous at 0. In fact, using L’Hôpital’s

Rule one can show that g(x) has continuous derivatives of any order at x = 0, and g(n)(0) = 0 for
any n > 0. The Maclaurin series associated to g(x) is, therefore, identically zero. It follows that
the Maclaurin series associated with g(x) does not converge to g(x) for x > 0.

Definition 5.2. An infinitely differentiable function f(x) is called real-analytic in a neighbourhood
of a point x = a, if for some positive R the Taylor series (16) associated with f(x) converges to
f(x) on (a − R, a + R).

Thus, ex is a real-analytic function, while the function g(x) in Example 5.3 is not real analytic
near x = 0.

Proof of Lagrange’s Remainder Theorem. . First note the following version of the Mean Value
Theorem: If f(x) and g(x) are continuous on a closed interval [a, b] and differentiable on the open
interval (a, b) and g′(x) 6= 0, then there exists a point c ∈ (a, b) such that

(23)
f(b) − f(a)

g(b) − g(a)
=

f ′(c)

g′(c)
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This can be proved by applying the Mean Value Theorem to the function h(x) = (f(b)−f(a))g(x)−
(g(b) − g(a))f(x).

Note that the n-th order derivative of RN (x) at x = 0 vanishes for n = 0, 1, 2, . . . , N . Therefore,
if we apply (23) to functions f(x) = RN (x) and g(x) = xN+1, then (assume x > 0 for simplicity)
there exists a point x1 ∈ (0, x) such that

RN (x)

xN+1
=

R′
N (x1)

(N + 1)xN
1

.

We now repeat the process and apply (23) to functions f(x) = R′
N (x) and g(x) = xN on the

interval (0, x1): there is x2 ∈ (0, x1) such that

R′
N (x1)

xN
1

=
R′′

N (x2)

NxN−1
2

.

Continue the process inductively N times. In the end we get

RN (x) =
xN+1

(N + 1)!

R
(N+1)
N (xN+1)

xN−N
N+1

,

where xN+1 ∈ (0, xN ) ⊂ · · · ⊂ (0, x). Now set c = xN+1, then cN−N = 1, and we can write

RN (x) =
R

(N+1)
N (c)

(N + 1)!
xN+1 =

f (N+1)(c)

(N + 1)!
xN+1,

where the last equality follows from the fact that R
(N+1)
N (x) = (f(x) − TN (x))(N+1) = f (N+1)(x),

because T
(N+1)
N ≡ 0. This proves the theorem. ¤

Example 5.4. Let f(x) = (1 + x)1/2. Then

f (n)(0) =
1

2

(

1

2
− 1

) (

1

2
− 2

)

. . .

(

1

2
− n + 1

)

.

Therefore,

cn =

(

1/2

n

)

=
1
2

(

1
2 − 1

) (

1
2 − 2

)

. . .
(

1
2 − n + 1

)

n!
,

and hence

(1 + x)1/2 ∼
∞

∑

n=0

(

1/2

n

)

xn

is the associated Maclaurin series. This is called the binomial series. Let us try use Lagrange’s
Remainder Theorem again to determine convergence of the series above. We have

RN (x) =
1
2

(

1
2 − 1

) (

1
2 − 2

)

. . .
(

1
2 − N

)

(1 + c)1/2−N

(N + 1)!
xN+1

for some c, |c| < |x|. If |x| < 1, then clearly xN+1 → 0 as N → ∞. Also, limN→∞
(1/2

N

)

= 0 (see

Exercise 5.3). If c > 0, then we also have (1 + c)1/2−N → 0 as N → ∞. However, if c < 0, then

(1 + c)1/2−N does not go to zero, and we cannot be sure that RN (x) goes to zero.
In general, the binomial series converges for x ∈ (−1, 1), and we have

(1 + x)k =

∞
∑

n=0

(

k

n

)

xn, k ∈ R, and |x| < 1.
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Exercises

5.1. Show that the function g(x) in Example 5.3 satisfies g′(0) = 0.
5.2. Find the Maclaurin series for f(x). Find the radius of convergence of the series, and show,

using Lagrange’s remainder theorem that the series converges to f(x).

(i) f(x) = cos x
(ii) f(x) = sin 2x.
(iii) f(x) = e2x.

5.3. Show that for any m,

lim
n→∞

(

m

n

)

= 0.

5.4. Compute
∞

∑

n=0

n(0.5)n.

5.5. Suppose that the function f(x) can be represented by a power series

f(x) =
∞

∑

n=0

(x + 1)n

2n
.

Find the first two terms of the Taylor series of f(x) centred at x = 0. (Hint: use the
previous problem).

5.6. Evaluate the integral
∫ 1

0

ln(1 − x)

x
dx.

Hint: Use Taylor series expansion and the identity
∑∞

n=1
1
n2 = π2

6 .
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