CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 10.

Due April 5.

10.1. Find the Maclaurin series for $f(x)$. Find the radius of convergence of the series, and show, using Lagrange's remainder theorem that the series converges to $f(x)$.
(i) $f(x)=x e^{2 x}$.
(ii) $f(x)=\sin x^{2}$.
10.2. Find the first 3 terms of the Taylor series of $f(x)$ centred at a :
(i) $f(x)=\sec x$ at $a=\frac{\pi}{4}$.
(ii) $f(x)=\tan ^{-1} x$ at $a=1$.
10.3. Find the Maclaurin series for $f(x)=\frac{x^{2}}{\sqrt{1+x}}$.
10.4. Approximate the function $f(x)=x^{x}$ at $a=1$ by a Taylor polynomial of degree 2. How good is your approximation at $x=1.1$?
10.5. Find the Cartesian equation of the curve which is given by a parametric equation

$$
x=2 \cos \theta, \quad y=3 \sin \theta, \quad \theta \in(-\pi, \pi) .
$$

Sketch the curve indicating with an arrow the direction in which the curve is traced as the parameter increases.
10.6. Evaluate the integral

$$
\int_{0}^{1} \frac{\ln (1-x)}{x} d x
$$

Hint: Use Taylor series expansion and the identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

