CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 5.

Due February 12.
5.1. Using only the $\epsilon-N$ definition of convergence of a sequence prove

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+2}=\frac{2}{3}
$$

5.2. Determine without proof $\sup S$, the supremum of the set S given by

$$
S=\left\{\frac{n}{n+m}, \text { where } n, m \in \mathbb{N}\right\}
$$

5.3. Recall that the Fibonacci sequence is defined by

$$
f_{1}=f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad \text { for } n>2
$$

Consider a sequence

$$
s_{1}=1, \quad s_{n}=\frac{f_{n+1}}{f_{n}} \text { for } n>1
$$

Assume that s_{n} converges. Find its limit.
5.4. Let $\left\{s_{n}\right\}$ be defined as

$$
s_{1}=0.3, s_{2}=0.33, s_{3}=0.333, \ldots
$$

Prove that $\left\{s_{n}\right\}$ converges.

