CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 6.

Due February 26.
6.1. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}
$$

is convergent or divergent. If it is convergent, find its sum.
6.2. Find the value of c such that $\sum_{n=1}^{\infty} 2^{n c}=2010$.
6.3. If the n-th partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is $S_{n}=3-n 2^{-n}$, find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
6.4. Let $\sum_{n=1}^{\infty} a_{n}$ be a series with positive terms.
(a) Suppose that for any $n \geq 1$, the partial sum S_{n} satisfies $S_{n}<100$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) Suppose that for any $n \geq 1$,

$$
a_{n}<\left(\frac{1}{2}\right)^{n} .
$$

Prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
In both parts, you do not need to find the sum of the series.

