CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 7.

Due March 5.

7.1. Find the values of p for which the series is convergent:

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}
$$

7.2. Determine whether the series converges or diverges.
(i) $\sum_{n=1}^{\infty} \frac{n+3}{\sqrt[3]{n^{7}+n^{2}+1}}$
(ii) $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n}$
(iii) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
7.3. Show that if $a_{n}>0$ and $\sum a_{n}$ is convergent, then $\sum \ln \left(1+a_{n}\right)$ is convergent.
7.4. Give an example that shows that it is possible for both $\sum a_{n}$ and $\sum b_{n}$ to diverge, but for $\sum a_{n} b_{n}$ to converge.
7.5. If $\sum a_{n}$ and $\sum b_{n}$ are both convergent series with positive terms, is it true that $\sum a_{n} b_{n}$ is also convergent? Justify your answer.

