CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 9.

Due March 26.

9.1. Find the radius and the interval of convergence of the following power series
(i) $\sum_{n=0}^{\infty} 5^{n} x^{3 n}$.
(ii) $\sum_{n=0}^{\infty} \frac{2 n+1}{3 n^{2}+2}(x-1)^{3 n}$.
(iii) $\sum_{n=0}^{\infty} 3^{n^{2}} x^{n^{2}}$.
9.2. Prove that if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=c$, then the radius of convergence of the series $\sum c_{n}(x-a)^{n}$ equals $1 / c$.
9.3. Compute $\sum_{n=0}^{\infty} n(0.5)^{n}$.
9.4. Find a power series representation (centred at $x=0$) of the function

$$
f(x)=\frac{x^{2}}{(1-2 x)^{2}}
$$

and find its radius of convergence.
9.5. Find the Taylor series for
(i) $f(x)=x e^{2 x}$ centred at $a=0$
(ii) $f(x)=\frac{1}{x^{2}}$ centred at $a=1$.
(iii) $f(x)=\ln \left(1+x^{2}\right)$ centred at $a=0$.
9.6. Suppose that the function $f(x)$ can be represented by a power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{2^{n}} .
$$

Find the first two terms of the Taylor series of $f(x)$ centred at $x=0$. (Hint: use Problem 9.3).

