CALCULUS 1501 WINTER 2010

HOMEWORK ASSIGNMENT 9.

Due March 26.

9.1. Find the radius and the interval of convergence of the following power series

(i)
$$\sum_{n=0}^{\infty} 5^n x^{3n}$$
.
(ii) $\sum_{n=0}^{\infty} \frac{2n+1}{3n^2+2} (x-1)^{3n}$.
(iii) $\sum_{n=0}^{\infty} 3^{n^2} x^{n^2}$.

- 9.2. Prove that if $\lim_{n\to\infty} \sqrt[n]{|c_n|} = c$, then the radius of convergence of the series $\sum c_n (x-a)^n$ equals 1/c.
- 9.3. Compute $\sum_{n=0}^{\infty} n(0.5)^n$.
- 9.4. Find a power series representation (centred at x = 0) of the function

$$f(x) = \frac{x^2}{(1-2x)^2}$$

and find its radius of convergence.

- 9.5. Find the Taylor series for
 - (i) $f(x) = xe^{2x}$ centred at a = 0
 - (ii) $f(x) = \frac{1}{x^2}$ centred at a = 1.
 - (iii) $f(x) = \ln(1 + x^2)$ centred at a = 0.
- 9.6. Suppose that the function f(x) can be represented by a power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(x+1)^n}{2^n}.$$

Find the first two terms of the Taylor series of f(x) centred at x = 0. (Hint: use Problem 9.3).