COMPLEX ANALYSIS I, MATH 4156/9056, WINTER 2010

HOMEWORK ASSIGNMENT 4.

Due March 11

- 4.1. Does there exist a holomorphic map from the unit disc onto \mathbb{C} ?
- 4.2. Find a conformal map from the strip

$$\{-2010 \,\pi < \operatorname{Re} z < 2010 \,\pi\}$$

onto the unit disc.

- 4.3. (a) Give a complete description of all biholomorphic maps of $\mathbb{C} \setminus \{0\}$ onto itself.
 - (b) Now let $\Omega = \mathbb{C} \setminus \{p_1, p_2, \dots, p_n\}$, where $p_j \in \mathbb{C}$. Give an explicit description of biholomorphic automorphisms of Ω .
- 4.4. Suppose that $\{f_{\alpha}\}$ is a family of holomorphic functions on a domain Ω such that any sequence of functions in the family has a subsequence that converges normally on Ω . Prove that the family $\{f'_{\alpha}\}$ has the same property.
- 4.5. (For 9056 only.) Prove the following version of the Reflection Principle. Let γ be a smooth real analytic curve given by the real analytic defining function

$$\tilde{r}(x,y) = r(z,\overline{z}) = \sum_{j,k\geq 0} a_{jk} z^j \overline{z}^k.$$

Suppose that γ' is another real analytic curve given by the defining function

$$\tilde{\rho}(x',y') = r(z',\overline{z}') = \sum_{j,k\geq 0} b_{jk} z'^j \overline{z}'^k.$$

Let z' = f(z) be a conformal mapping defined in a neighbourhood of γ such that $f(\gamma) = \gamma'$. Then the following holds:

$$r(z,\overline{w}) = 0 \iff \rho(f(z),\overline{f(w)}) = 0.$$