COMPLEX ANALYSIS I, MATH 4156/9056, WINTER 2010

HOMEWORK ASSIGNMENT 5.

Due March 25

- 5.1. Let $\{f_n\}$ be a sequence of rational functions that converges normally to f(z) on the extended complex plane \mathbb{C}^* . Show that $f_n(z)$ has the same degree as f(z) for large n. [Recall that deg f, the *degree* of a rational function $f(z) = \frac{p(z)}{q(z)}$, is defined as max{deg p, deg q}, where p(z) and q(z) are polynomials. It is known that if deg f = d, then each value $w \in \mathbb{C}$, $w \neq f(\infty)$, is assumed exactly d times (counting multiplicities).]
- 5.2. Show that the function

$$e^{\frac{1}{z}} + e^{-\frac{1}{z}}$$

omits only the value ∞ at z = 0.

- 5.3. Let f(z) be analytic on the punctured disc $\{0 < |z| < 1\}$ and define $f_n(z) = f(z/n), n \ge 1$. Show that $\{f_n\}$ is a normal family on the punctured disc iff the singularity of f(z) at z = 0 is removable or a pole.
- 5.4. Let $D \subset \mathbb{C}$ be a bounded domain. Suppose $f : D \to D$ is a holomorphic automorphism (conformal bijection). Let $f_n(z) = f \circ f \circ \cdots \circ f$ (*n* times).

(i) Prove that the sequence $\{f_n\}$ has a subsequence that converges either to a constant or to an automorphism of D.

(ii) If the whole sequence $\{f_n\}$ converges to g, then $f(z) \equiv z$.

5.5. (For 9056 only.) Prove that any conformal bijective map between two rectangles in \mathbb{C} sending vertices to vertices is a linear map.