1. (a) State Rolle's Theorem.

Solution:

See either (i) Theorem 1.11 in Professor Shafikov's on-line notes or (ii) page 284 of Stewart. Or if you are in Professor Metzler's class, you can find the theorem in the lecture notes from January 10^{th} .

(b) State the Mean Value Theorem.

Solution:

See either (i) Theorem 1.12 in Professor Shafikov's on-line notes or (ii) page 285 of Stewart. Or if you are in Professor Metzler's class, you can find the theorem in the lecture notes from January 11^{th} .

(c) Use Rolle's Theorem to prove the Mean Value Theorem.

Solution:

See either (i) the proof of Theorem 1.12 in Professor Shafikov's on-line notes or (ii) page 286 of Stewart. Or if you are in Professor Metzler's class, you can find the proof in the lecture notes from January 12^{th} .

2. Suppose f is continuous on [0, 2], differentiable on (0, 2) and satisfies f(0) = 0, f(2) = 2. Prove that there exists a point $x \in (0, 2)$ such that $f'(x) = \frac{1}{f(x)}$.

Hint: Consider the function $g(x) = [f(x)]^2$.

Solution:

As the product of continuous functions, g is itself continuous on [0, 2]. Similarly, as the product of differentiable functions, g is itself differentiable on (0, 2). Thus g satisfies the conditions of the Mean Value Theorem, which ensures that a point $x \in (0, 2)$ exists with the property that

$$g'(x) = \frac{g(2) - g(0)}{2 - 0}$$
.

Now g'(x) = 2f(x)f'(x), g(2) = 4 and g(0) = 0, so that the above equality can be re-written as 2f(x)f'(x) = 2, or $f'(x) = \frac{1}{f(x)}$.

3. (a) Evaluate
$$\int \ln x \, dx$$
.

Solution:

This is Example 2 in Section 7.1 of Stewart. Use integration by parts with $u = \ln x$ and dv = dx. This leads to $du = \frac{1}{x}dx$ and v = x, yielding

$$\int \ln x \, dx = x \ln x - \int x \frac{1}{x} \, dx = x \ln x - \int 1 \, dx = x \ln x - x + C \, .$$

(b) Evaluate
$$\int \frac{8x-3}{x^2-x} dx$$
.

Solution:

The denominator factors as $x^2 - x = x(x - 1)$, leading to

$$\frac{8x-3}{x^2-x} = \frac{A}{x} + \frac{B}{x-1} \implies 8x-3 = (A+B)x - A$$

Thus A = 3 and B = 5, and the integral is

$$\int \frac{8x-3}{x^2-x} \, dx = \int \frac{3}{x} \, dx + \int \frac{5}{x-1} \, dx = 3\ln|x| + 5\ln|x-1| + C \, .$$

4. Evaluate
$$\int e^{2x} \cos x \, dx$$
.

Solution:

This is a minor variation (and in fact easier version) of Problem 17, Section 7.1, which was a suggested exercise. The problem requires integration by parts twice (there are at least two ways to perform the integration). To this end let $I = \int e^{2x} \cos x \, dx$ and use integration by parts with $u = e^{2x}$ and $dv = \cos x \, dx$ (so that $du = 2e^{2x} \, dx$ and $v = \sin x$) to get

$$I = e^{2x} \sin x - 2 \int e^{2x} \sin x \, dx$$

Now use integration by parts again with $u = e^{2x}$ and $dv = \sin x \, dx$ (so that $du = 2e^{2x} \, dx$ and $v = -\cos x$) to get

$$I = e^{2x} \sin x - 2\left[-e^{2x} \cos x + 2\int e^{2x} \cos x \, dx\right] = e^{2x} \left(\sin x + 2\cos x\right) - 4I$$

Now solve for I (and introduce a constant of integration) to find

$$I = \frac{1}{5}e^{2x} (\sin x + 2\cos x) + C .$$

5. Find the partial fraction decomposition of $\frac{8x^3 + 19x^2 + 10x + 5}{(x^2 + 2x + 1)(x^2 + 1)}$. Form alone is not sufficient (that is, make sure you determine the numerical values of all coefficients).

Solution

The denominator is not fully factored, since $x^2 + 2x + 1 = (x+1)^2$. And

since $x^2 + 1$ is irreducible, the complete factorization of the denominator is $(x^2 + 2x + 1)(x^2 + 1) = (x + 1)^2 (x^2 + 1)$. We have one repeated linear factor and one irreducible quadratic, therefore the form of the decomposition is

$$\frac{8x^3 + 19x^2 + 10x + 5}{(x^2 + 2x + 1)(x^2 + 1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1}$$

Multiplying through by $(x + 1)^2(x^2 + 1)$ we get

$$8x^{3} + 19x^{2} + 10x + 5 = A(x+1)(x^{2}+1) + B(x^{2}+1) + (Cx+D)(x+1)^{2}$$

$$= (A+C) x^{3} + (A+B+2C+D) x^{2} + (A+C+2D) x + (A+B+D)$$

This system is easily solved: for example if A+C = 8 and A+C+2D = 10, then D = 1. And if A + B + 2C + D = 19 and A + B + D = 5, then C = 7. It is now easily found that A = 1 and B = 3. Therefore

$$\frac{8x^3 + 19x^2 + 10x + 5}{(x^2 + 2x + 1)(x^2 + 1)} = \frac{1}{x+1} + \frac{3}{(x+1)^2} + \frac{7x+1}{x^2+1}$$

6. Assess the convergence of the following integrals. If an integral converges, either evaluate it or provide an upper bound on its value.

(a)
$$\int_1^\infty x e^{-x^2} dx$$

Solution:

Substitute $u = x^2$ to obtain

$$\int_{1}^{b} x e^{-x^{2}} dx = \frac{1}{2} \int_{1}^{b^{2}} e^{-u} du = \frac{1}{2} \left[\frac{1}{e} - e^{-b^{2}} \right] .$$

And since $\lim_{b\to\infty} e^{-b^2} = 0$ we get

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} x e^{-x^{2}} dx = \frac{1}{2e}$$

Therefore the integral converges, and is equal to $\frac{1}{2e}$.

(b)
$$\int_{1}^{\infty} \frac{1}{x} e^{-x^2} dx$$

Solution:

If $x \ge 1$, then $\frac{1}{x} \le 1 \le x$, from which it follows that

$$\int_{1}^{\infty} \frac{1}{x} e^{-x^2} dx \le \int_{1}^{\infty} x e^{-x^2} dx$$

In (a) we showed that the integral on the right was convergent, therefore the Comparison Theorem ensures that the integral on the left converges as well. And since $\int_1^\infty x e^{-x^2} dx = \frac{1}{2e}$, it follows that $\int_1^\infty \frac{1}{x} e^{-x^2} dx$ is no larger than $\frac{1}{2e}$.

Other solutions are possible here, for example we could observe that $\frac{1}{x} \leq 1$ for $x \geq 1$, and compare the given integral with $\int_{1}^{\infty} e^{-x^2} dx$. We could then note that $e^{-x^2} \leq e^{-x}$ for $x \geq 1$ and compare the latter integral with $\int_{1}^{\infty} e^{-x} dx$, which is demonstrably convergent and equal to $\frac{1}{e}$ (you would need to show this to get full credit). Thus we would be led to the same conclusion, namely that $\int_{1}^{\infty} \frac{1}{x} e^{-x} dx$ converges, but would get an upper bound of $\frac{1}{e}$.

7. Evaluate
$$\int_0^3 \frac{2x}{x^2 - 1} dx$$
.

Solution:

The integrand has a vertical asymptote at x = 1, and therefore the integral will converge if and only if each of $\int_0^1 \frac{2x}{x^2-1} dx$ and $\int_1^3 \frac{2x}{x^2-1} dx$

converge. Checking the former first, we find

$$\int_{0}^{1} \frac{2x}{x^{2} - 1} dx = \lim_{c \to 1^{-}} \int_{0}^{c} \frac{2x}{x^{2} - 1} dx$$
$$= \lim_{c \to 1^{-}} \int_{0}^{c^{2}} \frac{1}{u - 1} du$$
$$= \lim_{c \to 1^{-}} \left[\ln \left(1 - c^{2} \right) \right]$$
$$= -\infty .$$

Therefore $\int_0^1 \frac{2x}{x^2-1} dx$ diverges, so that $\int_0^3 \frac{2x}{x^2-1} dx$ diverges as well. We could have just as easily found that

$$\int_{1}^{3} \frac{2x}{x^{2} - 1} dx = \lim_{c \to 1^{+}} \int_{c}^{3} \frac{2x}{x^{2} - 1} dx$$
$$= \lim_{c \to 1^{+}} \int_{c^{2}}^{9} \frac{1}{u - 1} du$$
$$= \lim_{c \to 1^{+}} \left[\ln (8) - \ln (c^{2} - 1) \right]$$
$$= \infty,$$

and been led to the same conclusion.

8. Show that $\Gamma(n + 1) = n\Gamma(n)$ for any integer $n \ge 1$. Be precise (i.e. carefully justify each step/calculation). You may assume that the integral defining $\Gamma(n)$ is convergent for any integer n.

Solution:

Recall that $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$. Thus

$$\Gamma(n+1) = \int_0^\infty x^n e^{-x} dx$$
$$= \lim_{b \to \infty} \int_0^b x^n e^{-x} dx$$

.

Use integration by parts with $u = x^n$ and $dv = e^{-x} dx$ (so that $du = nx^{n-1}dx$ and $v = -e^{-x}$) to find that

$$\int_0^b x^n e^{-x} dx = -x^n e^{-x} \Big|_{x=0}^{x=b} + n \int_0^b x^{n-1} e^{-x} dx$$
$$= -b^n e^{-b} + n \int_0^b x^{n-1} e^{-x} dx .$$

Now in order to evaluate the limit as $b \to \infty$ observe that

- Repeated use (*n* applications to be precise) of L'Hospital's Rule shows that $\lim_{b\to\infty} b^n e^{-b} = \lim_{b\to\infty} \frac{b^n}{e^b} = 0.$
- By definition of the improper integral, $\lim_{b\to\infty} \int_0^b x^{n-1} e^{-x} dx = \int_0^\infty x^{n-1} e^{-x} dx$.

Therefore

$$\begin{split} \Gamma(n+1) &= \lim_{b \to \infty} \left[-b^n e^{-b} + n \int_0^b x^{n-1} e^{-x} \, dx \right] \\ &= -\lim_{b \to \infty} b^n e^{-b} + n \lim_{b \to \infty} \int_0^b x^{n-1} e^{-x} \, dx \\ &= 0 + n \int_0^\infty x^{n-1} e^{-x} \, dx \\ &= n \Gamma(n) \;, \end{split}$$

as required.

9. (a) Use the formal definition to prove that the sequence $a_n = 3 + (-1)^n \frac{1}{n+7}$ converges to the limit L = 3

Solution:

To begin observe that $|a_n - 3| = \frac{1}{n+7}$, which is decreasing with n. Also note that if $\varepsilon > 0$, then $\frac{1}{n+7} < \varepsilon$ if and only if $n > \frac{1}{\epsilon} - 7$. Now let $\varepsilon > 0$ be given. No matter how large $\frac{1}{\epsilon} - 7$ is, there is an integer which exceeds it (for example $1 + \max(\lceil \frac{1}{\epsilon} - 7 \rceil, 1)$). Let N be such an integer; that is N is such that $N > \frac{1}{\epsilon} - 7$, or what is equivalent, $|a_N - 3| < \varepsilon$. If $n \ge N$, then

$$|a_n - 3| = \frac{1}{n+7} \le \frac{1}{N+7} = |a_N - 3| < \varepsilon$$
.

Thus for any $\varepsilon > 0$ there exists an integer N for which $|a_n - 3|$ whenever $n \ge N$. Therefore a_n converges to 3.

(b) Begin with the observations that (i) $a_n = \frac{n+1}{\sqrt{n}} = \sqrt{n} + \frac{1}{\sqrt{n}} > \sqrt{n}$ and (ii) for M > 0, $\sqrt{n} > M$ if and only if $n > M^2$.

Now let M > 0 be given. No matter how large M^2 , there is an integer which exceeds it ($\lceil M^2 \rceil$ for example). Let N be such an integer; that is N is such that $N > M^2$, equivalently $\sqrt{N} > M$. If $n \ge N$, then

$$a_n > \sqrt{n} \ge \sqrt{N} > M$$

Thus for all M > 0 there exists an integer N for which $a_n > M$ whenever $n \ge N$. Therefore $\lim_{n \to \infty} a_n = \infty$.

10. Determine whether or not the following sequences converge (you do not need to use the formal definition). If a sequence converges, evaluate its limit (state any theorems you use along the way). If a sequence diverges, explain why.

(a)
$$a_n = n^{1/n}$$

Solution:

This is of the form ∞^0 , which is indeterminate. So let $b_n = \ln(a_n) = \frac{\ln(n)}{n}$. Using L'Hopital's Rule we get that $b_n \to 0$, and

since $a_n = e^{b_n}$ and $f(x) = e^x$ is continuous at x = 0, we get that a_n converges to $e^0 = 1$.

(b)
$$a_n = \frac{1}{\sin\left(\frac{(-1)^n}{n}\right)}.$$

Solution:

The sequence $\frac{(-1)^n}{n}$ converges to zero, and $\sin x$ is continuous at x = 0, therefore $\sin\left(\frac{(-1)^n}{n}\right)$ converges to zero as well. However if n is even, then $\sin\left(\frac{(-1)^n}{n}\right) = \sin\left(\frac{1}{n}\right) > 0$, and if n is odd then $\sin\left(\frac{(-1)^n}{n}\right) = \sin\left(-\frac{1}{n}\right) < 0$. Thus the even terms of our sequence will diverge to ∞ , whereas the odd terms will diverge to $-\infty$. Therefore the sequence is divergent; note in particular that it is *not* true that $\lim_{n\to\infty} a_n = \infty$.

(c)
$$a_n = \frac{1 + \cos(n)}{\ln(n)}$$
.

Solution:

Since $-1 \leq \cos(n) \leq 1$, we have $0 \leq 1 + \cos(n) \leq 2$. Therefore $0 \leq a_n \leq \frac{2}{\ln(n)}$, and since $\frac{2}{\ln(n)}$ converges to zero, so does a_n by the Squeeze Theorem.