
1. (a) State Rolle’s Theorem.

Solution:

See either (i) Theorem 1.11 in Professor Shafikov’s on-line notes

or (ii) page 284 of Stewart. Or if you are in Professor Metzler’s

class, you can find the theorem in the lecture notes from January

10th.

(b) State the Mean Value Theorem.

Solution:

See either (i) Theorem 1.12 in Professor Shafikov’s on-line notes

or (ii) page 285 of Stewart. Or if you are in Professor Metzler’s

class, you can find the theorem in the lecture notes from January

11th.

(c) Use Rolle’s Theorem to prove the Mean Value Theorem.

Solution:

See either (i) the proof of Theorem 1.12 in Professor Shafikov’s

on-line notes or (ii) page 286 of Stewart. Or if you are in Pro-

fessor Metzler’s class, you can find the proof in the lecture notes

from January 12th.

2. Suppose f is continuous on [0, 2], differentiable on (0, 2) and satisfies

f(0) = 0, f(2) = 2. Prove that there exists a point x ∈ (0, 2) such that

f ′(x) =
1

f(x)
.

Hint: Consider the function g(x) = [f(x)]2.
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Solution:

As the product of continuous functions, g is itself continuous on [0, 2].

Similarly, as the product of differentiable functions, g is itself differ-

entiable on (0, 2). Thus g satisfies the conditions of the Mean Value

Theorem, which ensures that a point x ∈ (0, 2) exists with the property

that

g′(x) =
g(2)− g(0)

2− 0
.

Now g′(x) = 2f(x)f ′(x), g(2) = 4 and g(0) = 0, so that the above

equality can be re-written as 2f(x)f ′(x) = 2, or f ′(x) = 1
f(x)

.

3. (a) Evaluate

∫
ln x dx.

Solution:

This is Example 2 in Section 7.1 of Stewart. Use integration by

parts with u = ln x and dv = dx. This leads to du = 1
x
dx and

v = x, yielding∫
ln x dx = x ln x−

∫
x

1

x
dx = x ln x−

∫
1 dx = x ln x− x + C .

(b) Evaluate

∫
8x− 3

x2 − x
dx.

Solution:

The denominator factors as x2 − x = x(x− 1), leading to

8x− 3

x2 − x
=

A

x
+

B

x− 1
=⇒ 8x− 3 = (A + B)x− A .

Thus A = 3 and B = 5, and the integral is∫
8x− 3

x2 − x
dx =

∫
3

x
dx +

∫
5

x− 1
dx = 3 ln |x|+ 5 ln |x− 1|+ C .
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4. Evaluate

∫
e2x cos x dx.

Solution:

This is a minor variation (and in fact easier version) of Problem 17,

Section 7.1, which was a suggested exercise. The problem requires in-

tegration by parts twice (there are at least two ways to perform the

integration). To this end let I =
∫

e2x cos x dx and use integration

by parts with u = e2x and dv = cos x dx (so that du = 2e2x dx and

v = sin x) to get

I = e2x sin x− 2

∫
e2x sin x dx .

Now use integration by parts again with u = e2x and dv = sin x dx (so

that du = 2e2x dx and v = − cos x) to get

I = e2x sin x−2

[
−e2x cos x + 2

∫
e2x cos x dx

]
= e2x (sin x + 2 cos x)−4I .

Now solve for I (and introduce a constant of integration) to find

I =
1

5
e2x (sin x + 2 cos x) + C .

5. Find the partial fraction decomposition of
8x3 + 19x2 + 10x + 5

(x2 + 2x + 1)(x2 + 1)
. Form

alone is not sufficient (that is, make sure you determine the numerical

values of all coefficents).

Solution

The denomintor is not fully factored, since x2 + 2x+ 1 = (x+ 1)2. And
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since x2 + 1 is irreducible, the complete factorization of the denomina-

tor is (x2 + 2x + 1)(x2 + 1) = (x + 1)2 (x2 + 1). We have one repeated

linear factor and one irreducible quadratic, therefore the form of the

decomposition is

8x3 + 19x2 + 10x + 5

(x2 + 2x + 1)(x2 + 1)
=

A

x + 1
+

B

(x + 1)2
+

Cx + D

x2 + 1
.

Multiplying through by (x + 1)2(x2 + 1) we get

8x3 + 19x2 + 10x + 5 = A (x + 1)
(
x2 + 1

)
+ B

(
x2 + 1

)
+ (Cx + D) (x + 1)2

= (A + C) x3 + (A + B + 2C + D) x2

+ (A + C + 2D) x + (A + B + D)

This system is easily solved: for example if A+C = 8 and A+C+2D =

10, then D = 1. And if A + B + 2C + D = 19 and A + B + D = 5,

then C = 7. It is now easily found that A = 1 and B = 3. Therefore

8x3 + 19x2 + 10x + 5

(x2 + 2x + 1)(x2 + 1)
=

1

x + 1
+

3

(x + 1)2
+

7x + 1

x2 + 1
.

6. Assess the convergence of the following integrals. If an integral con-

verges, either evaluate it or provide an upper bound on its value.

(a)

∫ ∞
1

xe−x
2

dx

Solution:

Substitute u = x2 to obtain∫ b

1

xe−x
2

dx =
1

2

∫ b2

1

e−u du =
1

2

[
1

e
− e−b

2

]
.
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And since limb→∞ e−b
2

= 0 we get∫ ∞
1

xe−x
2

dx = lim
b→∞

∫ b

1

xe−x
2

dx =
1

2e
.

Therefore the integral converges, and is equal to 1
2e

.

(b)

∫ ∞
1

1

x
e−x

2

dx

Solution:

If x ≥ 1, then 1
x
≤ 1 ≤ x, from which it follows that∫ ∞

1

1

x
e−x

2

dx ≤
∫ ∞

1

xe−x
2

dx .

In (a) we showed that the integral on the right was convergent,

therefore the Comparison Theorem ensures that the integral on

the left converges as well. And since
∫∞

1
xe−x

2
dx = 1

2e
, it follows

that
∫∞

1
1
x
e−x

2
dx is no larger than 1

2e
.

Other solutions are possible here, for example we could observe

that 1
x
≤ 1 for x ≥ 1, and compare the given integral with∫∞

1
e−x

2
dx. We could then note that e−x

2 ≤ e−x for x ≥ 1 and

compare the latter integral with
∫∞

1
e−x dx, which is demonstra-

bly convergent and equal to 1
e

(you would need to show this to get

full credit). Thus we would be led to the same conlcusion, namely

that
∫∞

1
1
x
e−x dx converges, but would get an upper bound of 1

e
.

7. Evaluate

∫ 3

0

2x

x2 − 1
dx.

Solution:

The integrand has a vertical asymptote at x = 1, and therefore the

integral will converge if and only if each of
∫ 1

0
2x
x2−1

dx and
∫ 3

1
2x
x2−1

dx
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converge. Checking the former first, we find∫ 1

0

2x

x2 − 1
dx = lim

c→1−

∫ c

0

2x

x2 − 1
dx

= lim
c→1−

∫ c2

0

1

u− 1
du

= lim
c→1−

[
ln
(
1− c2

)]
= −∞ .

Therefore
∫ 1

0
2x
x2−1

dx diverges, so that
∫ 3

0
2x
x2−1

dx diverges as well.

We could have just as easily found that∫ 3

1

2x

x2 − 1
dx = lim

c→1+

∫ 3

c

2x

x2 − 1
dx

= lim
c→1+

∫ 9

c2

1

u− 1
du

= lim
c→1+

[
ln (8)− ln

(
c2 − 1

)]
= ∞ ,

and been led to the same conclusion.

8. Show that Γ(n + 1) = nΓ(n) for any integer n ≥ 1. Be precise (i.e.

carefully justify each step/calculation). You may assume that the in-

tegral defining Γ(n) is convergent for any integer n.

Solution:

Recall that Γ(z) =
∫∞

0
xz−1e−x dx. Thus

Γ(n + 1) =

∫ ∞
0

xne−x dx

= lim
b→∞

∫ b

0

xne−x dx .
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Use integration by parts with u = xn and dv = e−x dx (so that du =

nxn−1dx and v = −e−x) to find that∫ b

0

xne−x dx = − xne−x
∣∣x=b
x=0

+ n

∫ b

0

xn−1e−x dx

= −bne−b + n

∫ b

0

xn−1e−x dx .

Now in order to evaluate the limit as b→∞ observe that

• Repeated use (n applications to be precise) of L’Hospital’s Rule

shows that limb→∞ bne−b = limb→∞
bn

eb = 0.

• By definition of the improper integral, limb→∞
∫ b

0
xn−1e−x dx =∫∞

0
xn−1e−x dx.

Therefore

Γ(n + 1) = lim
b→∞

[
−bne−b + n

∫ b

0

xn−1e−x dx

]
= − lim

b→∞
bne−b + n lim

b→∞

∫ b

0

xn−1e−x dx

= 0 + n

∫ ∞
0

xn−1e−x dx

= nΓ(n) ,

as required.

9. (a) Use the formal definition to prove that the sequence an = 3 +

(−1)n 1
n+7

converges to the limit L = 3

Solution:
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To begin observe that |an − 3| = 1
n+7

, which is decreasing with n.

Also note that if ε > 0, then 1
n+7

< ε if and only if n > 1
ε
− 7.

Now let ε > 0 be given. No matter how large 1
ε
− 7 is, there is an

integer which exceeds it (for example 1 + max
(
d1
ε
− 7e, 1

)
). Let

N be such an integer; that is N is such that N > 1
ε
− 7, or what

is equivalent, |aN − 3| < ε. If n ≥ N , then

|an − 3| = 1

n + 7
≤ 1

N + 7
= |aN − 3| < ε .

Thus for any ε > 0 there exists an integer N for which |an − 3|
whenever n ≥ N . Therefore an converges to 3.

(b) Begin with the observations that (i) an = n+1√
n

=
√

n + 1√
n

>
√

n

and (ii) for M > 0,
√

n > M if and only if n > M2.

Now let M > 0 be given. No matter how large M2, there is an

integer which exceeds it (dM2e for example). Let N be such an

integer; that is N is such that N > M2, equivalently
√

N > M .

If n ≥ N , then

an >
√

n ≥
√

N > M .

Thus for all M > 0 there exists an integer N for which an > M

whenever n ≥ N . Therefore limn→∞ an =∞.

10. Determine whether or not the following sequences converge (you do not

need to use the formal definition). If a sequence converges, evaluate

its limit (state any theorems you use along the way). If a sequence

diverges, explain why.

(a) an = n1/n.

Solution:

This is of the form ∞0, which is indeterminate. So let bn =

ln (an) = ln(n)
n

. Using L’Hopital’s Rule we get that bn → 0, and
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since an = ebn and f(x) = ex is continuous at x = 0, we get that

an converges to e0 = 1.

(b) an =
1

sin
(

(−1)n

n

) .

Solution:

The sequence (−1)n

n
converges to zero, and sin x is continuous at

x = 0, therefore sin
(

(−1)n

n

)
converges to zero as well. However

if n is even, then sin
(

(−1)n

n

)
= sin

(
1
n

)
> 0, and if n is odd then

sin
(

(−1)n

n

)
= sin

(
− 1
n

)
< 0. Thus the even terms of our sequence

will diverge to ∞, whereas the odd terms will diverge to −∞.

Therefore the sequence is divergent; note in particular that it is

not true that limn→∞ an =∞.

(c) an =
1 + cos(n)

ln (n)
.

Solution:

Since −1 ≤ cos(n) ≤ 1, we have 0 ≤ 1 + cos(n) ≤ 2. Therefore

0 ≤ an ≤ 2
ln(n)

, and since 2
ln(n)

converges to zero, so does an by the

Squeeze Theorem.
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