
1. Consider the sequence defined by the recursion an+1 =
√

an .

(a) Show that if 0 < a0 < 1, then an is convergent.

Solution.

Observe that if x ∈ (0, 1), then (i)
√

x ∈ (0, 1) and (ii)
√

x > x.

Thus if an ∈ (0, 1) then 0 < an < an+1 < 1. By induction (formal

proof not necessary), if our sequence begins with a0 ∈ (0, 1) it will

be bounded and increasing. By the monotone sequence theorem

it will be convergent.

(b) Given that an is convergent and 0 < a0 < 1, evaluate L = lim
n→∞

an.

Solution.

Since f(x) =
√

x is continuous on its domain we have

L = lim
n→∞

an+1

= lim
n→∞

√
an

=
√

lim
n→∞

an

=
√

L

L therefore solves the equation L =
√

L, which is equivalent to

L2 = L or L(L−1) = 0. There are two possibilities, namely L = 0

and L = 1. Since an is increasing we must have L ≥ a0 > 0, and

therefore L = 1.

2. Evaluate the sum of the (convergent) series
∞∑

n=1

2

n(n + 1)
.

Solution

Noting that 2
n(n+1)

= 2
n
− 2

n+1
we find that the partial sums of this series
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are

sN =
N∑

n=1

2

n(n + 1)

=
N∑

n=1

[
2

n
− 2

n + 1

]

=
N∑

n=1

2

n
−

N∑
n=1

2

n + 1

=

[
2

1
+

2

2
+ . . . +

2

N − 1
+

2

N

]
−
[

2

2
+

2

3
+ . . . +

2

N
+

2

N + 1

]
= 2− 2

N + 1

Thus
∞∑

n=1

2

n(n + 1)
= lim

N→∞
sN

= lim
N→∞

(
2− 2

N + 1

)
= 2

3. Determine whether the series
∞∑

n=1

(−1)n+1 n

n + 1
is absolutely conver-

gent, conditionally convergent or divergent. Justify your answer.

Solution

The series is divergent since limn→∞ (−1)n+1 n
n+1

does not exist (even

terms converge to −1, odd terms to 1).

4. Let s denote the sum of the (convergent) infinite series
∞∑

n=1

1

n4
.
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(a) It can be shown that 1 + 1
24 + 1

34 + . . . + 1
104 = 1.0820 . . .. Use this

fact to derive an upper and lower bound for s.

Solution

If Rn = 1
(n+1)4

+ 1
(n+2)4

+ . . . we know that∫ ∞
n+1

1

x4
dx ≤ Rn ≤

∫ ∞
n

1

x4
dx .

And since
∫∞

n
1
x4 dx = 1

3n3 this yields the following

1

3 · 113
≤ R10 ≤

1

3 · 103
.

Adding s10 = 1.0820 . . . to each side gives

1.0820 . . . +
1

3 · 113
≤ s ≤ 1.0820 . . .

1

3 · 103
.

(b) In (a) we used 10 terms to estimate s. How many terms would

we need to use in order to ensure that the resulting error was no

larger than 10−6

3
?

Solution Since Rn ≤
∫∞

n
1
x4 dx = 1

3n3 , it suffices to ensure that
1

3n3 ≤ 10−6

3
. This will occur if and only if n ≥ 100, thus we need

at least 100 terms.

5. Determine whether the series
∞∑

n=1

√
n + 7√

n3 + 3n− 1
converges or diverges.

Solution

When n is large, we would expect that

√
n + 7√

n3 + 3n− 1
≈
√

n√
n3

=
n1/2

n3/2
=

1

n
.
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To verify this let bn = 1
n

and observe that

an

bn

= nan

=
n
√

n + 7n√
n3 + 3n− 1

=
n3/2 + 7n√
n3 + 3n− 1

=
n3/2

(
1 + 7n−1/2

)
n3/2
√

1 + 3n−2 − n−3

=
1 + 7n−1/2

√
1 + 3n−2 − n−3

It is clear now that limn→∞
an

bn
= 1, and since

∑∞
n=1 bn =

∑∞
n=1

1
n

diverges,
∑∞

n=1 an also diverges by limit comparison.

6. Determine whether the series
∞∑

n=0

(−2)n n!

(2n)!
is absolutely convergent,

conditionally convergent or divergent.

Solution

Let an = (−2)nn!
(2n)!

so that |an| = 2nn!
(2n)!

and∣∣∣∣an+1

an

∣∣∣∣ =
2n+1

2n
· (n + 1)!

n!
· (2n)!

(2(n + 1))!

= 2 · (n + 1) · 1

(2n + 2)(2n + 1)

=
1

2n + 1

Thus limn→∞ |an+1

an
| = 0 < 1, and the series is absolutely convergent by

the Ratio Test.
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7. Determine whether the series
∞∑

n=2

(−1)n+1 1

n ln(n)
is absolutely conver-

gent, conditionally convergent or divergent.

Solution

To check absolute convergence let f(x) = 1
x ln(x)

and observe that f is

clearly positive and decreasing on [2,∞). Moreover the substitution

u = ln(x) yields ∫ ∞
2

1

x ln(x)
dx =

∫ ∞
ln(2)

1

u
du =∞ .

Therefore the series
∑∞

n=2
1

n ln(n)
diverges by the Integral Test, and our

series is not absolutely convergent.

To check convergence let bn = 1
n ln(n)

and observe that (i) bn is clearly de-

creasing and (ii) limn→∞ bn = 0. Therefore the series
∑∞

n=2 (−1)n+1 1
n ln(n)

converges by the Alternating Series Test.

Therefore the series
∑∞

n=2 (−1)n+1 1
n ln(n)

is conditionally convergent.

8. (a) Is the series
∞∑

n=1

(−1)n+1 1√
n + 1

conditionally or absolutely con-

vergent? Justify your answer.

Solution

The series is convergent by the Alternating Series Test. But∑∞
n=1

1√
n+1

clearly diverges, so this convergence is not absolute.

Therefore the series is conditionally convergent.

(b) How many terms would be required in order to estimate the sum

of the series in part (a) with an error that does not exceed 10−4?

Solution
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Since this series satisfies the conditions of the Alternating Series

Test we know that

|Rn| ≤ bn+1 =
1√

n + 2
.

Thus in order to ensure that |Rn| ≤ 10−4 it suffices to ensure that
1√
n+2
≤ 10−4, which requires n ≥ 108 − 2. Thus if we use at least

108 − 2 terms we can be sure the resulting error does not exceed

10−4.

9. Determine the radius and interval of convergence for the power series
∞∑

n=0

(2x− 7)n

3n + 1
.

Solution

To begin note that (2x− 7)n = 2n
(
x− 7

2

)n
, and we see that the series

is centered at a = 7
2
. Now fix x 6= 7

2
and let an = (2x−7)n

3n+1
, so that∣∣∣∣an+1

an

∣∣∣∣ =
|2x− 7|n+1

|2x− 7|n
· 3n + 1

3(n + 1) + 1

= |2x− 7| · 3n + 1

3n + 4

Thus

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |2x− 7| · lim
n→∞

3n + 1

3n + 4
= |2x− 7| ,

and the Ratio Test ensures that our series converges whenever |2x− 7| <
1, or

∣∣x− 7
2

∣∣ < 1
2
, and diverges whenever

∣∣x− 7
2

∣∣ > 1
2
. Therefore the

radius of convergence is R = 1
2
.

In order to determine the interval of convergence we must check the

endpoints 7
2
± 1

2
, which are simply 3 and 4. When x = 3 the series

becomes
∑∞

n=1 (−1)n 1
3n+1

, which converges by the Alternating Series

Test. When x = 4 the series becomes
∑∞

n=1
1

3n+1
, which diverges by
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comparison (limit or otherwise) with the harmonic series. Thus the

interval of convergence is [3, 4).

10. (a) Express x
1+x4 as a power series. Be sure to indicate the radius and

interval of convergence.

Solution

Using the geometric series (and assuming |x| < 1, so that |−x4| <
1) we find that

1

1 + x4
=

1

1− (−x4)

=
∞∑

n=0

(
−x4

)n
=

∞∑
n=0

(−1)n x4n

= 1− x4 + x8 − x12 + x16 − . . .

Thus

x

1 + x4
= x

∞∑
n=0

(−1)n x4n

=
∞∑

n=0

(−1)n x4n+1

= x− x5 + x9 − x13 + x17 − . . .

The radius and interval of convergence are 1 and (−1, 1).

(b) Estimate
∫ 1

0
x

1+x4 dx using the first three (non-zero) terms of an

appropriate series.

Solution
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Integrating term-by-term we obtain∫ 1

0

x

1 + x4
dx =

∫ 1

0

[
x− x5 + x9 − x13 + x17 − . . .

]
dx

=

∫ 1

0

x dx−
∫ 1

0

x5 dx +

∫ 1

0

x9 dx− . . .

=
1

2
− 1

6
+

1

10
− . . .

Thus an estimate based on the first three terms is simply∫ 1

0

x

1 + x4
dx ≈ 1

2
− 1

6
+

1

10
=

13

30
.

Note also that ∫
x

1 + x4
dx =

∞∑
n=0

(−1)n x4n+2

4n + 2
,

whose interval of convergence is (−1, 1], so that this term-by-term

integration is in fact permitted.

11. Suppose that lim
n→∞

an+1

an

=
2

3
. Evaluate lim

n→∞
an.

Solution

Since limn→∞
an+1

an
= 2

3
, it follows that limn→∞ |an+1

an
| = 2

3
as well (the

function f(x) = |x| is continuous on all of R). Since 2
3

< 1 the

Ratio Test ensures that the series
∑∞

n=1 an converges, and therefore

limn→∞ an = 0.
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