Calculus 1501B - Winter 2012 - Section 001
 Assignment \# 1

- Due Friday, January $27^{\text {th }}$, by the end of class. Late assignments will not be accepted.
- You may hand in your assignment at any time prior to the due date, either in my office (MC 268 - slip it under the door if I am not there) or in class.
- Each question/question part is worth 5 marks.

1. Suppose that f is defined as

$$
f(x)=\left\{\begin{array}{cl}
x, & \text { if } \quad x<1 \\
0, & \text { if } x=1 \\
2-x, & \text { if } \quad x>1
\end{array}\right.
$$

Prove, by contradiction, that f does not attain a global maximum on $[0,2]$.
2. Your friend observes that if $f(x)=|x|$, then there is no point $c \in$ $(-1,1)$ for which for which $f^{\prime}(c)=0$. He concludes that this invalidates Rolle's Theorem. Explain why your friend is mistaken.
3. Your friend observes that if $f(x)=\frac{x^{2}-1}{x-1}$, then there is no point $c \in$ $(-1,0)$ for which $f^{\prime}(c)=0$. She concludes that this invalidates Rolle's Theorem. Explain why your friend is mistaken.
4. Suppose that f is continuous on the closed interval $[a, b]$. Prove that there exists a point $c \in(a, b)$ for which

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Hint: Define $F(z)=\int_{a}^{z} f(x) d x$ for $z \in[a, b]$ and use the Fundamental Theorem of Calculus to deduce relevant properties of F.
5. Suppose that f is a non-constant function which satisfies the conditions of Rolle's Theorem on the interval $[a, b]$.
(a) Sketch a graph to convince yourself that there should be a point $c \in(a, b)$ for which $f^{\prime}(c)>0$. I would recommend that you include a judiciously chosen secant line to graphically illustrate how one might actually locate a point with the desired properties.
(b) Prove that there exists a point $c \in(a, b)$ for which $f^{\prime}(c)>0$.
(c) Not for marks: Why is it necessary to insist that $f(a)=f(b)$ in order to ensure the existence of a point with the desired properties? That is, why didn't this question read "Suppose that f is a . . . conditions of the Mean Value Theorem . . ."?
6. A friend claims to have discovered a function f which is continuous on $[-1,3]$, differentiable on $(-1,3)$, satisfies $f(-1)=1$ and $f(3)=4$, and obeys the inequality $f^{\prime}(x) \leq \frac{1}{2}$ for all $x \in(-1,3)$. Prove that this friend is mistaken (or worse, lying).
7. Evaluate the following integrals
(a) $\int[\ln x]^{3} d x$
(b) $\int \frac{2 x^{2}+3 x+2}{x^{3}+2 x^{2}+x} d x$
(c) $\int_{0}^{1} x^{2} \tan ^{-1} x d x$
(d) $\int \frac{x^{2}+x+3}{x^{3}+x^{2}+x} d x$
8. Suppose that f is a twice differentiable function. Find an antiderivative of $x f^{\prime \prime}(x)$.

