Calculus 1501B - Winter 2012 Assignment # 2

- Due Monday, February 13^{th} by the end of class.
- You may hand in your assignment at any time prior to the due date, either in my office (MC 268 slip it under the door if I am not there) or in class.
- 1. Determine which of the following integrals converge.

(a)
$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx$$
 (b)
$$\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

(c)
$$\int_{-\infty}^{\infty} \sqrt{|x|} dx$$
 (d)
$$\int_{0}^{\infty} \frac{\sin^2 x}{1+x^3} dx$$

2. This problem concerns the improper integral

$$\int_0^1 \frac{1}{x^p} \, dx \; .$$

- (a) For what values of p does the integral converge?
- (b) When convergent, what is the value of the integral? Please note that I am requesting a formula for the value of this integral in terms of p.
- (c) How does this set of values found in (a) compare with those for which $\int_1^\infty \frac{1}{x^p} dx$ converges? You may use the results of any examples done in class.

- (d) There is a big difference in the "behaviour" of $\int_0^\infty \frac{1}{x^p} dx$ when p = 1 and $p \neq 1$. Describe this difference.
- 3. Determine whether or not the integral $\int_0^\infty x^{-1} e^{-x} dx$ converges. What does your answer tell you about the behaviour of $\Gamma(z)$ as $z \to 0^+$.
- 4. It can be shown that $\int_0^\infty \sqrt{x} e^{-x} dx = \sqrt{\pi}$. Use this fact to compute $\left(\frac{5}{2}\right)!$

5. Prove that
$$\lim_{n \to \infty} \frac{2n}{1-3n} = -\frac{2}{3}.$$

6. Evaluate the following limits (you do not need to use the formal definition)

(a)
$$\lim_{n \to \infty} \sqrt[n]{2^n + 3^n}$$
(b)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 + 4n} \right)$$
(c)
$$\lim_{n \to \infty} \frac{(-1)^n \sqrt{n} \sin(n^n)}{n+1}$$
(d)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
(e)
$$\lim_{n \to \infty} n \sin\left(\frac{1}{n}\right)$$

Hints:

- (a) $a^n + b^n = a^n \left[1 + \left(\frac{a}{b}\right)^n \right].$
- (b) Multiply by one.
- (c) $\sin(n^n)$ looks intimidating, but don't be scared it's actually not that big (or small).

7. Let $a_n = (-1)^n \frac{1}{n}$ and

$$f(x) = \begin{cases} 1+x & \text{if } x \ge 0\\ x & \text{if } x < 0 \end{cases}$$

Is it true that $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n)$? If not, does this violate Theorem 7 (page 695) in the textbook?

- 8. If $\lim_{n\to\infty} a_n = \infty$, then $\lim_{n\to\infty} \frac{1}{a_n} = 0$ (you do not need to prove this). Illustrate that the converse is not necessarily true by providing an example of a sequence for which $\lim_{n\to\infty} a_n = 0$ but $\lim_{n\to\infty} \frac{1}{a_n} \neq \infty$.
- 9. Suppose that $\lim_{n\to\infty} a_n = L$, and let $b_n = (-1)^n a_n$. For what values of L is b_n convergent?