Calculus 1501B - Winter 2012

Assignment \# 2

- Due Monday, February $13^{\text {th }}$ by the end of class.
- You may hand in your assignment at any time prior to the due date, either in my office (MC 268 - slip it under the door if I am not there) or in class.

1. Determine which of the following integrals converge.
(a) $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$
(b) $\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} d x$
(c) $\int_{-\infty}^{\infty} \sqrt{|x|} d x$
(d) $\quad \int_{0}^{\infty} \frac{\sin ^{2} x}{1+x^{3}} d x$
2. This problem concerns the improper integral

$$
\int_{0}^{1} \frac{1}{x^{p}} d x
$$

(a) For what values of p does the integral converge?
(b) When convergent, what is the value of the integral? Please note that I am requesting a formula for the value of this integral in terms of p.
(c) How does this set of values found in (a) compare with those for which $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges? You may use the results of any examples done in class.
(d) There is a big difference in the "behaviour" of $\int_{0}^{\infty} \frac{1}{x^{p}} d x$ when $p=1$ and $p \neq 1$. Describe this difference.
3. Determine whether or not the integral $\int_{0}^{\infty} x^{-1} e^{-x} d x$ converges. What does your answer tell you about the behaviour of $\Gamma(z)$ as $z \rightarrow 0^{+}$.
4. It can be shown that $\int_{0}^{\infty} \sqrt{x} e^{-x} d x=\sqrt{\pi}$. Use this fact to compute $\left(\frac{5}{2}\right)$!
5. Prove that $\lim _{n \rightarrow \infty} \frac{2 n}{1-3 n}=-\frac{2}{3}$.
6. Evaluate the following limits (you do not need to use the formal definition)
(a) $\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}+3^{n}}$
(b) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}+4 n}\right)$
(c) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sqrt{n} \sin \left(n^{n}\right)}{n+1}$
(d) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
(e) $\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)$

Hints:

(a) $a^{n}+b^{n}=a^{n}\left[1+\left(\frac{a}{b}\right)^{n}\right]$.
(b) Multiply by one.
(c) $\sin \left(n^{n}\right)$ looks intimidating, but don't be scared - it's actually not that big (or small).
7. Let $a_{n}=(-1)^{n} \frac{1}{n}$ and

$$
f(x)=\left\{\begin{array}{rll}
1+x & \text { if } & x \geq 0 \\
x & \text { if } & x<0
\end{array}\right.
$$

Is it true that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)$? If not, does this violate Theorem 7 (page 695) in the textbook?
8. If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$ (you do not need to prove this). Illustrate that the converse is not necessarily true by providing an example of a sequence for which $\lim _{n \rightarrow \infty} a_{n}=0$ but $\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \neq \infty$.
9. Suppose that $\lim _{n \rightarrow \infty} a_{n}=L$, and let $b_{n}=(-1)^{n} a_{n}$. For what values of L is b_{n} convergent?

