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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

3. Improper Intergrals.

So far we dealt with integration of continuous functions on bounded intervals. In this section
we will discuss integration of continuous functions on unbounded intervals, and also integration of
certain unbounded functions.

3.1. Unbounded intervals. Suppose a function f(x) is continuous on the interval (a,∞), so that

the integral
∫ b
a f(x)dx is well-defined for any b > a. The limit of this integral as b → ∞ will be

called the improper integral of f(x) on (a,∞). That is

(1)

∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a
f(x)dx.

If the limit exists (i.e., it is a finite number), then we say that the integral
∫∞
a f(x)dx converges or

is convergent. If the limit is infinite, or does not exist, we say that the improper integral diverges
or is divergent.

Example 3.1. Consider f(x) = 1
1+x2

. Then for any b > 0,∫ b

0

dx

1 + x2
= tan−1 x

∣∣∣b
0

= tan−1 b.

Therefore, ∫ ∞
0

dx

1 + x2
= lim

b→∞

∫ b

0

dx

1 + x2
= lim

b→∞
tan−1 b =

π

2
.

Thus, the integral
∫∞
0

dx
1+x2

converges to π/2. �

Example 3.2. Consider f(x) = 1
xp , where p > 0 is a real number. Let us find the values of the

exponent p for which the integral

(2)

∫ ∞
1

dx

xp

converges. If p 6= 1, and b > 1 any number, then∫ b

1

dx

xp
=

1

1− p
x1−p

∣∣∣b
1

=
1

1− p
(b1−p − 1).

If p > 1, then b1−p → 0 as a→∞, and the integral in (2) converges. If p < 1, then b1−p →∞ and
the integral diverges. Suppose now that p = 1. Then∫ b

1

dx

x
= lnx

∣∣∣b
1

= ln b,

and since lim
b→∞

ln b = ∞, we conclude that
∫∞
1

dx
x diverges. Thus, the improper integral in (2)

converges for p > 1 and diverges for 0 < p ≤ 1. �
1
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Figure 1. The graph of e−x sinx

In a similar way we define improper integrals from −∞ to b:∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a
f(x)dx.

Finally, we define ∫ ∞
−∞

f(x)dx = lim
b→∞
a→−∞

∫ b

a
f(x)dx.

In the latter case, we may also choose any number A so that∫ ∞
−∞

f(x)dx =

∫ A

−∞
f(x)dx+

∫ ∞
A

f(x)dx.

Then the integral on the left-hand side converges if and only if both integrals on the right-hand
side converge.

Example 3.3. Determine whether the following integrals converge.

(i)

∫ 0

−∞
ex sinx dx

(ii)

∫ ∞
−∞

dx

x2 − 2x+ 2

Solution: (i) Integrating by parts twice, we obtain∫
ex sinx dx =

1

2
(−ex cosx+ ex sinx).

Therefore,∫ 0

−∞
ex sinx dx = lim

a−→∞

1

2
(−ex cosx+ ex sinx)

∣∣∣0
a

= lim
a→−∞

1

2
(−1 + ea cos a− ea sin a) = −1

2
.
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Indeed, since sinx and cosx are bounded functions, and lim
b→∞

e−b = 0, it follows that

lim
b→∞

e−b sin b = lim
b→∞

e−b cos b = 0.

(ii) First note that denominator of the integrand does not vanish for any x, and so the function
under the integral sign is continuous on R. We have∫ ∞

−∞

dx

x2 − 2x+ 2
=

∫ 1

−∞

dx

x2 − 2x+ 2
+

∫ ∞
1

dx

x2 − 2x+ 2
.

Here instead of 1 as a limit of integration we could have chosen any other number. To determine
convergence of each integral on the right, observe that∫

dx

x2 − 2x+ 2
=

∫
dx

(x− 1)2 + 1
= tan−1(x− 1).

Thus, ∫ 1

−∞

dx

x2 − 2x+ 2
= lim

a→−∞
tan−1(x− 1)

∣∣∣1
a

= lim
a→−∞

(
tan−1(0)− tan−1(a− 1)

)
= π/2.

Similarly,∫ ∞
1

dx

x2 − 2x+ 2
= lim

b→∞
tan−1(x− 1)

∣∣∣b
1

= lim
b→∞

(
tan−1(b− 1)− tan−1(0)

)
= π/2,

and so ∫ ∞
−∞

dx

x2 − 2x+ 2
= π.

�

Sometimes it is possible to determine if an improper integral converges without computing the
limit. This is particularly useful when the integral is hard or simply impossible to evaluate explicitly.
For example, we can use the following result, usually referred to as the Comparison test for improper
integrals.

Theorem 3.1. Suppose there exists a number A ≥ a such that the inequality

0 ≤ f(x) ≤ g(x)

holds for all x ≥ A. Then convergence of the integral
∫∞
a g(x)dx implies convergence of

∫∞
a f(x)dx,

and equivalently, divergence of
∫∞
a f(x)dx implies divergence of

∫∞
a g(x)dx.

We will return to the proof of this theorem later, when we discuss series. Note that the fact that
the required inequality must hold starting only from some number A, which can be quite large,
indicates that for the convergence of the integral only the behaviour of the function at infinity
matters.

Example 3.4. We determine convergence of

(3)

∫ ∞
1

sin2 x√
x3 + 1

dx.

Since sin2 x ≤ 1, and
√
x3 + 1 >

√
x3 for x > 1, we conclude that

sin2 x√
x3 + 1

≤ 1√
x3

=
1

x3/2
.
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By Example 3.2, the integral
∫∞
1

dx
xp converges for p = 3/2. Therefore, by Theorem 3.1, the improper

integral in (3) converges. �

Example 3.5. Consider ∫ ∞
2

ln(lnx)√
x

dx.

For x > e3 ≈ 20.085537, we have ln(lnx) > 1, and therefore, ln(lnx)√
x

> 1√
x
. Since the integral∫∞

1
dx√
x

diverges by Example 3.2, the integral above diverges by Theorem 3.1. �

3.2. Unbounded functions. Suppose now that the interval of integration is bounded but the
function is unbounded. We first assume that the function f(x) is defined and continuous on [a, b)

but becomes unbounded as x → b−. For such function f(x) the integral
∫ b
a f(x)dx cannot be

defined using the Riemann sums as we did this for continuous functions on [a, b]. Instead, we set

(4)

∫ b

a
f(x)dx = lim

t→b−

∫ t

a
f(x)dx.

We say that the improper integral in (4) converges if the limit exists and finite, and diverges
otherwise.

Example 3.6. The function f(x) = 1√
1−x2 is continuous on [0, 1), and for any 0 < b < 1, we have∫ b

0

dx√
1− x2

= sin−1 x
∣∣∣b
0

= sin−1(b).

Thus, ∫ 1

0

dx√
1− x2

dx = lim
b→1−

sin−1(b) = π/2,

and the integral converges. �

A similar definition can be made when the function f(x) is unbounded near the point a:

(5)

∫ b

a
f(x)dx = lim

t→a+

∫ b

t
f(x)dx.

Example 3.7. Verify convergence of the improper integral∫ 1

−1

cos−1(x)√
1− x2

dx.

First observe that when x→ −1+, the function cos−1(x) approaches π and so

lim
x→−1+

cos−1(x)√
1− x2

=∞.

On the other hand, using L’Hôpital’s Rule,

lim
x→1−

cos−1(x)√
1− x2

= 1,

and therefore, the integral is proper near x = 1. Hence,∫ 1

−1

cos−1(x)√
1− x2

dx = lim
t→−1+

∫ 1

t

cos−1(x)√
1− x2

dx.
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We have∫ 1

t

cos−1(x)√
1− x2

dx = −
∫ 0

cos−1(t)
udu = −1

2
u2
∣∣∣0
cos−1(t)

= −1

2
(cos−1 x)2

∣∣∣1
t

=
1

2
(cos−1 t)2.

where u = cos−1(x). Thus, ∫ 1

−1

cos−1(x)√
1− x2

dx = lim
t→−1+

1

2
(cos−1 t)2 =

π2

2
.

�

Finally, suppose that there is a point c ∈ (a, b) such that the function f(x) is continuous on
[a, b] except the point c near which it is unbounded. Then the improper integral of f(x) on (a, b)
is defined as follows: ∫ b

a
f(x)dx = lim

t→c−

∫ t

a
f(x)dx+ lim

s→c+

∫ b

s
f(x)dx.

Note that the integral on the left converges if and only if both integral on the right converge. Also,
it would be incorrect to integrate the function f(x) on (a, b) ignoring the singularity of f(x) at c.

Example 3.8. Consider ∫ 2

0

dx

x2 − 1
.

The function under the integral sign is discontinuous at the point x = 1, therefore the above integral
is improper, and ∫ 2

0

dx

x2 − 1
= lim

t→1−

∫ t

0

dx

x2 − 1
+ lim
s→1+

∫ 2

s

dx

x2 − 1
.

Consider the first integral on the right:∫ t

0

dx

x2 − 1
=

1

2
ln
|x− 1|
|x+ 1|

∣∣∣∣∣
t

0

=
1

2
ln
|t− 1|
|t+ 1|

.

As t→ 1−, the quantity under the logarithm approaches zero, and therefore, this integral diverges

as t→ 1−. Therefore,
∫ 2
0

dx
x2−1 also diverges. �

3.3. The Gamma function. Recall that the factorial function n! is defined on the set of natural
numbers as n! = 1 · 2 · ... ·n. This definition is not suitable for real numbers. However, we may plot
the points (n, n!) on the (x, y)-coordinate system, and raise the following important interpolation
problem: find a smooth curve that connects the points (x, y) in the plane given by (n, n!), n ∈ N. If
such a function indeed exists, then we may simply declare the value of this function on non-integers
to be the value of the factorial.

A plot of the first few factorials (see Fig 1.) makes it clear that such a curve can be drawn,
but how can one derive a formula that precisely describes the curve? As it turns out, no finite
combination of power functions, exponential functions or logarithms with a fixed number of terms
can produce such a function. But it is possible to find a general formula as an integral depending
on a parameter. This is called the Gamma function, Γ(x). It was discovered by L. Euler in 1729.
The symbol Γ(x) and the name were proposed in 1814 by A.M. Legendre.

The Gamma function Γ(x) is defined as an improper integral

(6) Γ(x) =

∫ ∞
0

tx−1e−tdt.
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Figure 2. Interpolating n!

This brings together integration by parts and improper integrals. First consider the case x = 1.
We have

Γ(1) =

∫ ∞
0

e−tdt = lim
s→∞

∫ s

0
e−tdt = lim

s→∞
−e−t

∣∣∣s
0

= 1.

Now, using integration by parts, we can show that Γ(n+1) = n ·Γ(n). Indeed, for an integer n ≥ 1,

Γ(n+ 1) =

∫ ∞
0

tn+1−1e−tdt =

∫ ∞
0

tne−tdt.

Consider the indefinite integral
∫
tne−tdt. We apply integration by parts by choosing u = tn, and

dv = e−tdt. Then du = n tn−1dt and v = −e−t. According to the integration by parts formula, we
have ∫

tne−tdt = −tn e−t −
∫
−e−tn tn−1dt = −tn e−t + n

∫
tn−1e−tdt.

Thus,

(7)

∫ ∞
0

tne−tdt = lim
s→∞

[
−tn e−t

∣∣∣∣s
0

+ n

∫ s

0
tn−1e−tdt

]
.

For the first term inside the limit above we get

lim
s→∞

(
−tn

et

)∣∣∣∣s
0

= lim
s→∞

−s
n

es
.

Using L’Hôpital’s Rule n times we see that

lim
s→∞

sn

es
= lim

s→∞

n! s0

es
= 0.

For the second term on the right hand side of (7) we have

lim
s→∞

n

∫ s

0
tn−1e−tdt = nΓ(n).

Combining everything together we have Γ(n + 1) = nΓ(n). This identity provides a reduction
formula which can be used to compute inductively the values of the Gamma function for positive
integers:

Γ(n+ 1) = n! where n ∈ N.
Indeed, Γ(2) = 1; Γ(3) = Γ(2 + 1) = 2 · Γ(2) = 2; Γ(4) = Γ(3 + 1) = 3 · Γ(3) = 3 · 2, etc.
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Figure 3. The graph of Γ(x)

In fact, by inspection we see that our application of the integration by parts formula is valid not
only for integer values n, but for all real x > 0 (see Exercises 3.4 and 3.5 for the case 0 < x < 1),
and so we have

(8) Γ(x+ 1) = xΓ(x) for all x > 0.

Exercises

3.1. Give an ε− δ definition of convergence of an improper integral in equation (4).
3.2. Abel’s test for convergence of improper integrals states the following: suppose f(x) and

g(x) are defined on [a,∞),
∫∞
a f(x)dx converges, and there exists a real number M such

that |g(x)| < M for all x ≥ a. Then the integral∫ ∞
a

f(x)g(x)dx

converges. Use this test to verify convergence of the following integrals:

(a)

∫ ∞
1

sinx√
x4 + 1

dx,

(b)

∫ ∞
1

sinx√
x4 + 1

· tan−1 x dx.

3.3. Determine for which values of λ ∈ R the following integral converges:

(a)

∫ 1

0
xλ lnx dx,

(b)

∫ ∞
0

dx

xλ
.

3.4. For x ≥ 1 our calculations in Section 3.3 show the convergences of the improper integral
that defines the Gamma function. However, if x < 1, then the integral in (6) contains
a negative power of t (x − 1 becomes negative). Use the comparison test for improper
integrals to show that the Gamma function is well-defined for 0 < x < 1. (Hint: split the
integral in (6) into two integrals.)

3.5. Verify formula (8) for the case when 0 < x < 1.
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3.6. Show that the integral in (6) diverges if x ≤ 0.
3.7. The integral ∫ ∞

−∞
e−x

2
dx =

√
π

is called the Gaussian integral. It is particularly important in probability theory and
statistics.
(a) Use the Comparison test to prove that the Gaussian integral converges (without re-

ferring to its actual value, which is not so easy to compute).
(b) Use the value of this integral to evaluate Γ(1/2)

3.8. Use Problem 3.7 to calculate Γ(5/2).
3.9. Prove that limx→0+ Γ(x) = +∞.


