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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

4. Sequences

Definition 4.1. A sequence s is a function s : N→ R. It can be thought of as a list of numbers

s1, s2, s3, . . . ,

where sn = s(n) for n ∈ N.

Example 4.1.

(i) {sn} =
{

1, 12 ,
1
3 , . . .

}
. The corresponding function s : N→ R is given by s(n) = 1

n .
(ii) Let

{sn} =

{
1

2
,

1

6
,

1

12
,

1

20
, . . .

}
.

Here s(n) = 1
n·(n+1) .

(iii) {sn} = {1,−1, 1,−1, 1,−1 . . . }. For this sequence we can take, for example, sn = (−1)n+1.

�

A sequence is defined inductively (or recursively) if sn = f(s1, . . . sn−1), i.e., each term of the
sequence is defined as a function of previously defined terms.

Example 4.2. (Fibonacci sequence1.) By definition, the first two terms of the Fibonacci sequence
{fn} are 1 and 1, and each consequent number is the sum of the previous two. Inductively this can
be defined as follows.

f1 = f2 = 1, fn = fn−1 + fn−2, for n > 2.

The first several terms of the Fibonacci sequence can be easily computed to be

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

�

Example 4.3. s1 =
√

2, sn =
√

2 + sn−1 for n > 1. Then

s1 =
√

2, s2 =

√
2 +
√

2, s3 =

√
2 +

√
2 +
√

2, s4 =

√
2 +

√
2 +

√
2 +
√

2, . . .

�

Definition 4.2. A sequence {sn} converges to a real number L if for every positive number ε, there
exists an N ∈ N such that |sn − L| < ε for all n > N . In this case we write

lim
n→∞

sn = L.

If {sn} does not converge, it is said to diverge.

1The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius
Bonaccio, ”son of Bonaccio”). Fibonacci’s 1202 book Liber Abaci introduced the sequence to Western European
mathematics, although the sequence had been previously described in Indian mathematics.

1
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The above definition is sometimes called the ε-N definition of convergence of a sequence.

Example 4.4. lim
n→∞

1√
n

= 0.

To prove this, set sn = 1√
n

, and L = 0. We need to show that given any ε > 0, there exists an

index N > 0 such that |sn − L| = |1/
√
n| < ε for n > N . The inequality 1/

√
n < ε is equivalent to

n > 1/ε2. By taking N = d1/ε2e, we ensure that if n > N , then |1/
√
n| < ε. (Recall that dxe is

the ceiling function; it equals the smallest integer bigger than or equal to x.) �

Using a similar argument one can show that lim
n→∞

1

np
= 0 for p > 0 (Exercise 4.1(i)).

Example 4.5. lim
n→∞

n+ 1

n
= 1.

Let sn = n+1
n , and L = 1. Then

|sn − L| =
∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =

∣∣∣∣ 1n
∣∣∣∣ < ε,

and therefore, the choice of N = d1/εe will ensure that |sn − L| < ε. �

Example 4.6. lim
n→∞

(
1

2

)n
= 0.

Set sn =
(
1
2

)n
, L = 0. Then∣∣∣∣(1

2

)n∣∣∣∣ < ε ⇐⇒ n ln(1/2) < ln ε ⇐⇒ n >
ln ε

ln(1/2)
.

Note that ln(1/2) < 0, and so division by this number reverses the inequality. We could take
N = d ln ε

ln(1/2)e, but then N becomes negative for ε > 1. So a better choice is

N = max

{⌈
ln ε

ln(1/2)

⌉
, 1

}
.

�

Definition 4.3. We say that a sequence {sn} diverges to infinity, and write lim
n→∞

sn = ∞ if for

any real number M there exists an N ∈ N such that sn > M whenever n ≥ N .

Example 4.7. The Fibonacci sequence diverges to infinity. Indeed, starting with n = 6 we see
that fn > n. Therefore, given any number M > 0, fn > M for all n > max{dMe, 6}. �

Example 4.8. Investigate convergence of {rn} for different values of r > 0.

Suppose r > 1. Then if M > 0 is arbitrary, the inequality rn > M is satisfied for n >
lnM

ln r
. Thus

rn diverges to infinity if r > 1. If r = 1, then rn is a constant sequence 1, hence converges to 1.

Finally, if 0 < r < 1, then lim
n→∞

rn = 0. Indeed, given ε > 0, for n > max

{
ln ε

ln r
, 1

}
the inequality

rn < ε holds. �

The following theorem provides a convenient way of calculating the limit by reducing the problem
to algebraic manipulation of existing limits. It can be proved directly using the ε-N definition of
convergence.



CALC 1501 LECTURE NOTES 3

Theorem 4.4 (Algebraic Limit Theorem). If lim an = A, lim bn = B, then
(i) lim(can) = cA for c ∈ R,
(ii) lim(an + bn) = A+B,
(iii) lim(an · bn) = A ·B,

(iv) lim

(
an
bn

)
=
A

B
, if bn 6= 0 and B 6= 0.

Example 4.9. Examples of use of the Algebraic Limit Theorem.

1. lim
n→∞

5n− 3n2

2n2 + (−1)n
= lim

n→∞

5/n− 3

2 + (−1)n
n2

= −3

2
. Here we use the result of Exercise 4.1(i) and

also the fact that lim
n→∞

|an| = 0 implies lim
n→∞

an = 0, which follows directly from the ε-N

definition of convergence.

2. lim
n→∞

n lnn

(n+ 1)2
= lim

n→∞

n

n+ 1
· lim
n→∞

lnn

n+ 1
= 1 · lim

n→∞

1/n

1
= 0. Here we used l’Hôpital’s rule.

�

Further important reduction for computing limits of sequences is the following: if f is a con-
tinuous function and {sn} is a sequence that converges to limit L, then lim

n→∞
f(sn) = f(L). In

particular, this fact provides a useful trick for finding limits of sequences defined by an inductive
formula: suppose {sn} is given by

(1) sn+1 = f(sn),

where f is a continuous function, and assume that the limit L of the sequence {sn} exists. Then,
since lim sn = lim sn+1 = L, we may take the limit on both sides of (1): L = f(L). This will give
the value of L, provided that the equation can be solved for L.

Example 4.10. Let {sn} be defined inductively by s1 = 1, and

(2) sn+1 =
2sn + 3

4

Assume that the limit of {sn} exists, say, lim
n→∞

sn = L. Then we can take the limit as n → ∞ on

both sides of (2). We get

lim
n→∞

sn+1 = lim
n→∞

2sn + 3

4
.

it follows that

L =
2L+ 3

4
, so L = 3/2.

Hence, lim sn = 3/2. �

If apriori it is not known that the limit of {sn} exists, then the calculation of L from equation
(1) may produce unpredictable results, see Exercise 4.4 for details. Thus, justification of existence
of the limit becomes an important problem in its own right.

Theorem 4.5 (Squeeze Theorem). If an ≤ bn ≤ cn for n > n0 and

lim
n→∞

an = lim
n→∞

cn = L,

then lim
n→∞

bn = L.
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Proof. Take any ε > 0. We need to find N > 0 such that |bn − L| < ε whenever n > N . Since
an → L, there is N1 > 0 such that for n > N1 we have |an − L| < ε. An equivalent form of this
inequality is

L− ε < an < L+ ε.

Similarly, since cn → L, there is N2 > 0 such that |cn − L| < ε for n > N2, or

L− ε < cn < L+ ε.

Take N = max{N1, N2}. Then for n > N we have

L− ε < an ≤ bn ≤ cn < L+ ε,

which implies that |bn − L| < ε. �

Example 4.11. lim
n→∞

5n

nn
= 0.

To prove this we use the Squeeze Theorem. Indeed, for n > 6,

0 <
5n

nn
=

(
5

n

)n
<

(
5

6

)n
.

We may take an = 0, bn =
5n

nn
, and cn =

(
5

6

)n
. Since lim

n→∞

(
5

6

)n
= 0 by Example 4.8, the Squeeze

Theorem implies that lim
n→∞

5n

nn
= 0. �

Definition 4.6. A sequence {sn} is called increasing if sn+1 ≥ sn for all n, strictly increasing if
sn+1 > sn for all n. Decreasing and strictly decreasing sequences are defined similarly. Decreasing
and increasing sequences are called monotone sequences.

Example 4.12.

{
n

n2 + 1

}
is a decreasing sequence. This can be proved either by verifying the

inequality
n+ 1

(n+ 1)2 + 1
≥ n

n2 + 1
for all n, or by showing that that function f(x) =

x

x2 + 1
has a

negative derivative for x > 1. �

Definition 4.7. An upper bound of a non-empty subset S of R is a number b such that b ≥ s,
for any s ∈ S. A number l is a least upper bound or supremum of S, denoted by supS, if l is an
upper bound of S, and if b is another upper bound of S then l ≤ b.

Example 4.13.

(1) S1 = {0, 1/2, 2/3, 3/4, . . . }. Then supS1 = 1.
(2) S2 = N. This set is unbounded, and therefore, the upper bound for this set does not exist.
(3) Let

S3 = {sinn, n ∈ N} = {sin 1, sin 2, sin 3, . . . }.
This set is bounded above by 1, since sinx ≤ 1 for any x. But is there supS3? If n could
attain any real value, then since sin(π2 + 2πk) = 1, the supremum would be 1. However,
since n ∈ N, sinn 6= 1 for any n. Therefore, if supS3 exists, in order to find it, one needs
to investigate how close a natural number n can come to the set of numbers of the form
π
2 + 2πk, k ∈ N.

�

Lower bound and greatest lower bound (infimum) are defined similarly.
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Definition 4.8. A sequence {sn} is bounded above (resp. below) if the set

{sn;n ∈ N} = {s1, s2, s3, . . . }
has an upper (resp. lower) bound.

Axiom of Completeness. Every nonempty set of real numbers that has an upper bound, has a
least upper bound.

The Axiom of Completeness distinguishes real numbers from rational numbers. For example,
the set S = {x ∈ R : x2 < 2} has a least upper bound

√
2. However, the set of rational numbers r,

such that r2 < 2, is bounded, but it does not have a least upper bound in Q (
√

2 is not rational!).
Thus, the Axiom of completeness is false for rationals.

Let us return to Example 4.13(3). Since the set S3 is bounded above by 1, the Axiom of
Completeness guarantees that S3 has a supremum, although it is a non-trivial problem to determine
its value.

Theorem 4.9 (Monotone Convergence Theorem). Every bounded monotone sequence converges.

Proof. Consider the case when {sn} is an increasing sequence bounded above. Since the set S =
{sn; n ∈ N} is bounded, by the Axiom of Completeness, there exists l = supS. We claim that l is
the limit of {sn}. Indeed, take any ε > 0. Then since l is the supremum of S, there exits an index
N such that sN > l − ε. But since the sequence is increasing, we have sn > l − ε for all n > N .
This means that |l − sn| < ε for n > N , which proves that lim sn = l.

The case when {sn} is decreasing and bounded below can be proved in a similar way. �

Example 4.14. Consider the sequence defined in Example 4.3. We may use induction to show
that sn < 2 for all n. Indeed, s1 =

√
2 < 2. If sn < 2, then 2 + sn < 4. Taking the square root on

both sides, we get
√

2 + sn < 2, which means that sn+1 < 2. This shows that the inequality sn < 2
holds for all n.

Further, {sn} is increasing. Indeed, sn <
√

2 + sn is equivalent to s2n − sn − 2 < 0, which holds
true for −1 < sn < 2. By the previous paragraph sn < 2, and therefore, sn < sn+1 for all n.

Thus, {sn} is a bounded monotone sequence, and by the Monotone Convergence Theorem {sn}
converges. The limit L can be found by taking the limit as n→∞ on both sides of sn =

√
sn + 2.

We have
L =

√
2 + L =⇒ L2 − L− 2 = 0.

This equation has two roots: −1 and 2. Since sn > 0 for all n, L = 2. �

Example 4.15. Let a and b be two distinct positive real numbers with a > b. Recall that the
arithmetic mean of a and b is the number a+b

2 , the geometric mean equals
√
ab, and the harmonic

mean is defined as 2ab
a+b . It is easy to see that all three mean values are the numbers between b and

a. We construct inductively the sequences of arithmetic and harmonic means as follows

a1 =
a+ b

2
, b1 =

2ab

a+ b

a2 =
a1 + b1

2
, b2 =

2a1b1
a1 + b1

......

an+1 =
an + bn

2
, bn+1 =

2anbn
an + bn

......

(3)
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We have

(
√
a−
√
b)2 > 0 =⇒ a+ b

2
>
√
ab =⇒

(
a+ b

2

)2

> ab =⇒ a+ b

2
>

2ab

a+ b
.

Thus the arithmetic mean of two numbers is always bigger than or equal to their harmonic mean.
It follow from this calculation that

an > an+1 > bn+1 > bn

Therefore, the sequence {bn} is increasing and bounded above, while the sequence {an} is decreasing
and bounded below. It follows from the Monotone Convergence Theorem that both sequences
converge. But what is the limit?

To answer this question assume that limn→∞ an = α and limn→∞ bn = β. By taking the limit as
n→∞ in the formula

an+1 =
an + bn

2

we obtain the identity α = α+β
2 , i.e., α = β. To determine the value of α, observe that a1 ·b1 = a ·b.

In fact, the identity
an+1 · bn+1 = an · bn = a · b

holds for all n. By passing to the limit we obtain α · α = ab, or α =
√
ab, i.e., both sequences

converge to the geometric mean of a and b. �

Exercises

4.1. Using only Definition 4.2 prove

(i) limn→∞
1

np
= 0, p > 0.

(ii) limn→∞
1 + 2n

5 + 3n
=

2

3
.

(iii) limn→∞
sinn

n+ 1
= 0.

4.2. Give the definition of divergence of a sequence without referring to converge of a sequence.
Use your definition to show that the sequence sn = (−1)n + 1

n diverges.

4.3. Give a definition of limn→∞ sn = −∞. Use your definition to verify that lim loga n = −∞
for 0 < a < 1.

4.4. Let the sequence {sn} be defined inductively as s1 = 1, and sn+1 = sn
2 − 1 for n > 1.

Compute L using the ideas of Example 4.10, and then show that this L cannot be the limit
of the sequence sn.

4.5. Use the Squeeze Theorem to find lim
n→∞

sinn+ cosn√
n

.

4.6. Prove that if a sequence {sn} converges, then the set S = {s1, s2, . . . } is bounded.

4.7. Let {sn} be defined as s1 = 0.3, s2 = 0.33, s3 = 0.333, .... . Prove that {sn} converges.

4.8. Let {fn} be the Fibonacci sequence as defined in Example 4.2. Consider a sequence

s1 = 1, sn =
fn+1

fn
for n > 1.

Assume that sn converges. Find its limit.
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4.9. Show that the sequence {xn} defined by x1 = 3, xn+1 = 1
4−xn for n > 1, converges. Then

find the limit.

4.10. Following the discussion in Example 4.15, consider the inductive sequences of the arithmetic
means {an} and the geometric means {bn} starting with two distinct positive numbers a
and b with a > b. Show that both sequences converge to the same limit. (This limit is
called the arithmetic-geometric mean of a and b. Surprisingly, it is a difficult problem to
find exact formula for its value, in terms of a and b, in fact, this formula involves the
so-called elliptic integrals.)


