Practice Midterm \#2

Questions Drawn from 2010 Tests/Exams

1. Consider the sequence given recursively by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right) .
$$

(a) Calculate a_{2} and a_{3}.
(b) Assume that $\left\{a_{n}\right\}$ converges, and that $\lim _{n \rightarrow \infty} a_{n}=L$. Find L.
2. Determine whether the series

$$
\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)
$$

converges or diverges. If it converges, find its sum.
3. (a) State the Monotone Sequence Theorem.
(b) Suppose $a_{n}>0$ for $n=1,2, \ldots$, and that

$$
\begin{aligned}
& \qquad s_{n}=\sum_{k=1}^{n} a_{k}<2-\frac{1}{n} \\
& \text { for } n>1 \text {. Prove that } \sum_{n=1}^{\infty} a_{n} \text { converges. }
\end{aligned}
$$

4. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{n^{3}+n^{2}-3}{\sqrt{n^{9}+7 n^{3}+3 n}}
$$

converges or diverges. Justify your answer using an appropriate test.
5. Determine whether the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}
$$

converges or diverges. Justify your answer using an appropriate test.
6. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{n+4^{n}}{3^{n}}
$$

converges or diverges. Justify your answer using an appropriate test.
7. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{n^{4 n}}{(n!)^{n}}
$$

converges or diverges. Justify your answer using an appropriate test.
8. Approximate the sum of the (convergent) series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{(2 n)!}
$$

to within an error of 0.01 . Leave your answer as the sum of fractions.
9. (a) Define what it means for $\sum_{n=1}^{\infty} a_{n}$ to be conditionally convergent.
(b) Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}
$$

is conditionally convergent, absolutely convergent or divergent.
Justify your answer using one or more appropriate tests.
10. Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(n!)^{2}}{(2 n)!}
$$

is conditionally convergent, absolutely convergent or divergent. Justify your answer using one or more appropriate tests.
11. Prove: If $a_{n}>0$ for all $n \geq 1$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$
converges. converges.
12. Find the radius and interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-4)^{n}}{n 3^{n}}
$$

13. Express the function $f(x)=\frac{x}{1-x^{2}}$ as a power series. Be sure to indicate the radius and interval of convergence.
