Practice Midterm \#2

Questions Drawn from 2010 Tests/Exams

1. Evaluate $\int_{0}^{1} x \tan ^{-1}\left(x^{2}\right) d x$.
2. Evaluate $\int e^{x} \sin x d x$.
3. Evaluate $\int \frac{x^{2}+x}{(x-1)^{3}} d x$.
4. Evaluate $\int \frac{2 x^{2}+x+5}{x\left(x^{2}-2 x+5\right)} d x$.
5. Prove, using the Mean Value Theorem: If $x<0$, then $e^{x}>1+x$.
6. Suppose that f is continuous on $[1,3]$ and differentiable on $(1,3)$. Further suppose that $f(1)=7$ and $f^{\prime}(x)<1$ for all $x \in(1,3)$. Prove, using the Mean Value Theorem, that $f(3)<9$.
7. (a) Recall that the Gamma function is defined as $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. Using this definition, evaluate $\Gamma(2)$.
(b) Determine the value of the (convergent) improper integral $\int_{0}^{\infty} t^{30} e^{-t} d t$.
8. Use the Comparison Theorem for improper integrals to determine the convergence of

$$
\int_{0}^{1} \frac{1}{\sqrt{x^{3}+x}} d x
$$

If the integral converges, you do not need to evaluate it.
9. Consider the sequence given recursively by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right) .
$$

(a) Calculate a_{2} and a_{3}.
(b) Assume that $\left\{a_{n}\right\}$ converges, and that $\lim _{n \rightarrow \infty} a_{n}=L$. Find L.
10. Determine whether the sequence given by

$$
a_{n}=\frac{[\ln (n)]^{2}}{n}
$$

converges or diverges. If it converges, find its limit.
11. (a) State the $\epsilon-N$ definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) Prove, using the definition asked for in part (a), that

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0
$$

