
Solutions to Practice Midterm 2

Problem 1. Evaluate
1∫
0

x arctan
(
x2
)
dx.

Solution. We integrate by parts using the following:

u = arctan
(
x2
)
, dv = xdx, du =

2x

1 + x4
dx, v =

x2

2
.

We then have

1∫
0

x arctan
(
x2
)
dx =

x2

2
arctan

(
x2
) ∣∣∣∣1

0

−
1∫

0

x3

1 + x4
dx

We then substitute u = 1 + x4, du = 4x3dx.

x2

2
arctan

(
x2
) ∣∣∣∣1

0

−
1∫

0

x3

1 + x4
dx =

x2

2
arctan

(
x2
) ∣∣∣∣1

0

− 1

4

u(1)∫
u(0)

1

u
dx

=
x2

2
arctan

(
x2
) ∣∣∣∣1

0

− 1

4
ln (u)

∣∣∣∣u(1)
u(0)

=
x2

2
arctan

(
x2
) ∣∣∣∣1

0

− 1

4
ln
(
1 + x4

) ∣∣∣∣1
0

=
π

8
− 1

4
ln 2.

Problem 2. Evaluate
∫
ex sinx dx.

Solution. We integrate by parts twice. Let

u = ex, dv = sinx dx, du = exdx, v = − cosx.

We then have ∫
ex sinx dx = −ex cosx+

∫
ex cosx dx.

To integrate
∫
ex cosx dx, let

u = ex, dv = cosx dx, du = exdx, v = sinx.

We have ∫
ex cosx dx = ex sinx−

∫
ex sinx dx.

1



Substituting this into the first equation,∫
ex sinx dx = −ex cosx+

∫
ex cosx dx

= −ex cosx+ ex sinx−
∫
ex sinx dx.

This rearranges to

2

∫
ex sinx dx = −ex cosx+ ex sinx+ C̃∫
ex sinx dx =

1

2
(−ex cosx+ ex sinx) + C.

Problem 3. Evaluate
∫ x2 + x

(x− 1)3
dx.

Solution. We integrate by partial fractions. The partial fraction decomposition is

x2 + x

(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3

x2 + x = A(x− 1)2 +B(x− 1) + C.

Solving this equation yields A = 1, B = 3, and C = 2. Substituting these values into the partial fraction
decomposition allows us to integrate:∫

x2 + x

(x− 1)3
dx =

∫
1

x− 1
dx+

∫
3

(x− 1)2
dx+

∫
2

(x− 1)3
dx

= ln |x− 1| − 3

(
1

x− 1

)
− 1

(x− 1)2
+K.

Problem 4. Evaluate
∫ 2x2 + x+ 5

x(x2 − 2x+ 5)
dx.

Solution. We integrate by partial fractions. We first complete the square in the denominator, rewriting
x2 − 2x+ 5 as (x− 1)2 + 4, and then rewriting the quotient in terms of x− 1.

2x2 + x+ 5

x(x2 − 2x+ 5)
=

2(x− 1)2 + 5(x− 1) + 8

([x− 1] + 1) ([x− 1]2 + 4)

Let y = x− 1. The partial fraction decomposition is

2y2 + 5y + 8

(y + 1) (y2 + 4)
=

A

y + 1
+
By + C

y2 + 4

2y2 + 5y + 8 = (y2 + 4)A+ (y + 1)(By + C).

Solving for A, B, and C yields A = 1, B = 1, and C = 4. Then,∫
2y2 + 5y + 8

(y + 1) (y2 + 4)
dy =

∫
1

y + 1
dy +

∫
y + 4

y2 + 4
dy

=

∫
1

y + 1
dy +

∫
y

y2 + 4
dy +

∫
4

y2 + 4
dy

= ln |y + 1|+ 1

2
ln |y2 + 4|+ arctan

y

2
+K

= ln |x|+ 1

2
ln |(x− 1)2 + 4|+ arctan

x− 1

2
+K.
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Problem 5. Prove, using the Mean Value Theorem: If x < 0, then ex > 1 + x.

Solution. Let f(x) = ex − x − 1. Then, f ′(x) = ex − 1. When x < 0, ex < 1 and f ′(x) < 0. For every
x < 0, f(x) is continuous on [x, 0] and is differentiable on (x, 0); f(x) satisfies the conditions of the Mean
Value Theorem. Therefore, there exists c ∈ (x, 0) such that

f ′(c) =
f(0)− f(x)

0− x
.

This evaluates to

ec − 1 =
e0 − (0)− 1− (ex − x− 1)

−x
=
−ex + x+ e0

−x
=
−ex + x+ 1

−x
,

which rearranges to

positive︷ ︸︸ ︷
(−x)

negative︷ ︸︸ ︷
(ec − 1)︸ ︷︷ ︸

negative

= −ex + x+ 1.

Multipltying through by (−1),

ex − x− 1 = x(ec − 1) > 0,

which implies that for all x < 0

ex > x+ 1.

Problem 6. Suppose that f is continuous on [1, 3] and differentiable on (1, 3). Futher suppose that f(1) = 7
and f ′(x) < 1 for all x ∈ (1, 3). Prove, using the Mean Value Theorem, that f(3) < 9.

Solution. Since f is continuous on [1, 3] and differentiable on (1, 3), it satisfies the conditions of the mean
value theorem. So, there exists some c ∈ (1, 3) such that

f ′(c) =
f(3)− f(1)

3− 1
.

Since f ′(x) < 1 for all x ∈ (1, 3), f ′(c) < 1. Rearranging shows

f(3) = (3− 1)f ′(c) + f(1)

= 2f ′(c) + f(1)

< 2(1) + 7 < 9.

Problem 7. Recall that the Gamma function is defined as Γ (x) =
∞∫
0

tx−1e−t dt.

(a) Use this definition of the Gamma function to evaluate Γ (2).

(b) Determine the value of the (convergent) improper integral
∞∫
0

t30e−t dt.

Solution. (a) We integrate by parts.

Γ (2) =

∞∫
0

t2−1e−t dt =

∞∫
0

te−t dt.
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Let

u = t, dv = e−t dt, du = dt, v = −e−t.

We then have

∞∫
0

te−t dt = −te−t
∣∣∞
0

+

∞∫
0

e−t dt

= −te−t
∣∣∞
0
− e−t

∣∣∞
0

= − lim
s→∞

se−s + 1.

To evaluate lim
s→∞

se−s we use L’Hopitals Rule.

Γ (2) = − lim
s→∞

se−s + 1

H
= −

(
lim
s→∞

(
−e−s

))
+ 1 = 1

(b)
∞∫
0

t30e−t dt is equal to Γ (31). From part (a) we found that Γ (2) = 1. We know that the Gamma

function is a continuous version of the factorial, and on the positive integers Γ (n) = (n−1)!. Therefore
∞∫
0

t30e−t dt = Γ (31) = 30!.

Problem 8. Use the Comparison Theorem for improper integrals to determine the convergence of

1∫
0

1√
x3 + x

dx.

Solution. For all x ∈ (0, 1), x3 +x ≥ x. It follows that
√
x3 + x ≥

√
x as well. Taking inverses,

1√
x3 + x

≤
1√
x

for all x ∈ (0, 1). Further,
1√

x3 + x
≥ 0 for all x ∈ (0, 1). Then, by the comparison test,

0 ≤
1∫

0

1√
x3 + x

dx ≤
1∫

0

1√
x
dx

= 2
√
x
∣∣1
0
.

Since this is finite,
1∫
0

1√
x3 + x

dx converges.

Problem 9. Consider the sequence given recursively by

a1 = 2, an+1 =
1

2

(
an +

2

an

)
.

(a) Calculate a2 and a3.

(b) Assume that {an} converges, and that lim
x→∞

an = L. Find L.
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Solution. (a) We compute a2 and a3.

a2 =
1

2

(
a1 +

2

a1

)
=

1

2

(
2 +

2

2

)
=

3

2

a3 =
1

2

(
3

2
+

4

3

)
=

17

12
.

(b) Let L = lim
n→∞

an. Assuming {an} converges, we can compute

L =
1

2

(
L+

2

L

)
.

Solving this is equivalent to solving L2 = 2. Since an is always positive, L =
√

2.

Problem 10. Determine whether the sequence given by

an =
(ln(n))

2

n

converges or diverges. If it converges, find its limit.

Solution.
Solution 1:

lim
n→∞

(lnn)2

n
= lim
n→∞

2(lnn) · 1/n
1

= lim
n→∞

2 lnn

n
= lim
n→∞

2

n
= 0.

Solution 2: Since ln(n) and n are both positive for all n > 2,
(ln(n))

2

n
is also positive for all n > 2.

Hence, it is bounded below by zero.

Let f(x) =
√
x− (lnx)

2
. We will show that f(x) is positive for all x > 1, and this will imply

(ln(n))
2

n
≤

√
n

n
for all n > 1. f(1) = 1 > 0. If its derivative is always positive, then f(x) will be increasing and f(x)

will positive for all x > 1. Its derivative f ′(x) =
1

2

(
1√
x

)
− 2 lnx

x
is positive if and only if

1

2

√
x − 2 lnx

is positive. This is positive for x = 1, and taking the second derivative shows that f ′(x) is increasing when

x > 1. This implies f(x) =
√
x − (lnx)

2
is always positive, so

√
x ≥ (lnx)

2
. We have, for all x > 1, the

inequalities

0 ≤ (ln(n))
2

n
≤
√
n

n
=

1√
n
.

Taking the limit as n approaches infinity,

0 ≤ lim
n→∞

(ln(n))
2

n
≤ lim
n→∞

1√
n

= 0.

By the Squeeze Theorem we conclude that an =
(ln(n))

2

n
converges to 0 as n approaches infinity.

Problem 11. (a) State the ε−N definition of lim
n→∞

an = L.

(b) Prove, using the definition asked for in part (a), that

lim
n→∞

1

lnn
= 0.
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Solution. (a) A sequence {an} is said to converge to a limit L if for every number ε > 0, there exists a
number N ∈ N such that for every n > N , |an − L| < ε.

(b) Fix ε > 0. Take N ∈ N such that N > e1/ε. Then, for all n > N ,∣∣∣∣ 1

lnn

∣∣∣∣ ≤ ∣∣∣∣ 1

lnN

∣∣∣∣
≤
∣∣∣∣ 1

ln e
1
ε

∣∣∣∣ =
1(
1
ε

) = ε.

The first inequality holds because lnn is increasing. We conclude lim
n→∞

1

lnn
= 0.
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