Solutions to Practice Midterm 2

Problem 1. Evaluate $\int_{0}^{1} x \arctan \left(x^{2}\right) d x$.
Solution. We integrate by parts using the following:

$$
u=\arctan \left(x^{2}\right), \quad d v=x d x, \quad d u=\frac{2 x}{1+x^{4}} d x, \quad v=\frac{x^{2}}{2}
$$

We then have

$$
\int_{0}^{1} x \arctan \left(x^{2}\right) d x=\left.\frac{x^{2}}{2} \arctan \left(x^{2}\right)\right|_{0} ^{1}-\int_{0}^{1} \frac{x^{3}}{1+x^{4}} d x
$$

We then substitute $u=1+x^{4}, d u=4 x^{3} d x$.

$$
\begin{aligned}
\left.\frac{x^{2}}{2} \arctan \left(x^{2}\right)\right|_{0} ^{1}-\int_{0}^{1} \frac{x^{3}}{1+x^{4}} d x & =\left.\frac{x^{2}}{2} \arctan \left(x^{2}\right)\right|_{0} ^{1}-\frac{1}{4} \int_{u(0)}^{u(1)} \frac{1}{u} d x \\
& =\left.\frac{x^{2}}{2} \arctan \left(x^{2}\right)\right|_{0} ^{1}-\left.\frac{1}{4} \ln (u)\right|_{u(0)} ^{u(1)} \\
& =\left.\frac{x^{2}}{2} \arctan \left(x^{2}\right)\right|_{0} ^{1}-\left.\frac{1}{4} \ln \left(1+x^{4}\right)\right|_{0} ^{1} \\
& =\frac{\pi}{8}-\frac{1}{4} \ln 2
\end{aligned}
$$

Problem 2. Evaluate $\int e^{x} \sin x d x$.
Solution. We integrate by parts twice. Let

$$
u=e^{x}, \quad d v=\sin x d x, \quad d u=e^{x} d x, \quad v=-\cos x
$$

We then have

$$
\int e^{x} \sin x d x=-e^{x} \cos x+\int e^{x} \cos x d x
$$

To integrate $\int e^{x} \cos x d x$, let

$$
u=e^{x}, \quad d v=\cos x d x, \quad d u=e^{x} d x, \quad v=\sin x
$$

We have

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

Substituting this into the first equation,

$$
\begin{aligned}
\int e^{x} \sin x d x & =-e^{x} \cos x+\int e^{x} \cos x d x \\
& =-e^{x} \cos x+e^{x} \sin x-\int e^{x} \sin x d x
\end{aligned}
$$

This rearranges to

$$
\begin{aligned}
2 \int e^{x} \sin x d x & =-e^{x} \cos x+e^{x} \sin x+\tilde{C} \\
\int e^{x} \sin x d x & =\frac{1}{2}\left(-e^{x} \cos x+e^{x} \sin x\right)+C
\end{aligned}
$$

Problem 3. Evaluate $\int \frac{x^{2}+x}{(x-1)^{3}} d x$.
Solution. We integrate by partial fractions. The partial fraction decomposition is

$$
\begin{aligned}
\frac{x^{2}+x}{(x-1)^{3}} & =\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}} \\
x^{2}+x & =A(x-1)^{2}+B(x-1)+C
\end{aligned}
$$

Solving this equation yields $A=1, B=3$, and $C=2$. Substituting these values into the partial fraction decomposition allows us to integrate:

$$
\begin{aligned}
\int \frac{x^{2}+x}{(x-1)^{3}} d x & =\int \frac{1}{x-1} d x+\int \frac{3}{(x-1)^{2}} d x+\int \frac{2}{(x-1)^{3}} d x \\
& =\ln |x-1|-3\left(\frac{1}{x-1}\right)-\frac{1}{(x-1)^{2}}+K
\end{aligned}
$$

Problem 4. Evaluate $\int \frac{2 x^{2}+x+5}{x\left(x^{2}-2 x+5\right)} d x$.
Solution. We integrate by partial fractions. We first complete the square in the denominator, rewriting $x^{2}-2 x+5$ as $(x-1)^{2}+4$, and then rewriting the quotient in terms of $x-1$.

$$
\frac{2 x^{2}+x+5}{x\left(x^{2}-2 x+5\right)}=\frac{2(x-1)^{2}+5(x-1)+8}{([x-1]+1)\left([x-1]^{2}+4\right)}
$$

Let $y=x-1$. The partial fraction decomposition is

$$
\begin{gathered}
\frac{2 y^{2}+5 y+8}{(y+1)\left(y^{2}+4\right)}=\frac{A}{y+1}+\frac{B y+C}{y^{2}+4} \\
2 y^{2}+5 y+8=\left(y^{2}+4\right) A+(y+1)(B y+C)
\end{gathered}
$$

Solving for A, B, and C yields $A=1, B=1$, and $C=4$. Then,

$$
\begin{aligned}
\int \frac{2 y^{2}+5 y+8}{(y+1)\left(y^{2}+4\right)} d y & =\int \frac{1}{y+1} d y+\int \frac{y+4}{y^{2}+4} d y \\
& =\int \frac{1}{y+1} d y+\int \frac{y}{y^{2}+4} d y+\int \frac{4}{y^{2}+4} d y \\
& =\ln |y+1|+\frac{1}{2} \ln \left|y^{2}+4\right|+\arctan \frac{y}{2}+K \\
& =\ln |x|+\frac{1}{2} \ln \left|(x-1)^{2}+4\right|+\arctan \frac{x-1}{2}+K
\end{aligned}
$$

Problem 5. Prove, using the Mean Value Theorem: If $x<0$, then $e^{x}>1+x$.
Solution. Let $f(x)=e^{x}-x-1$. Then, $f^{\prime}(x)=e^{x}-1$. When $x<0, e^{x}<1$ and $f^{\prime}(x)<0$. For every $x<0, f(x)$ is continuous on $[x, 0]$ and is differentiable on $(x, 0) ; f(x)$ satisfies the conditions of the Mean Value Theorem. Therefore, there exists $c \in(x, 0)$ such that

$$
f^{\prime}(c)=\frac{f(0)-f(x)}{0-x}
$$

This evaluates to

$$
e^{c}-1=\frac{e^{0}-(0)-1-\left(e^{x}-x-1\right)}{-x}=\frac{-e^{x}+x+e^{0}}{-x}=\frac{-e^{x}+x+1}{-x},
$$

which rearranges to

$$
\underbrace{\overbrace{(-x)}^{\text {positive }} \overbrace{\left(e^{c}-1\right)}^{\text {negative }}}_{\text {negative }}=-e^{x}+x+1
$$

Multipltying through by (-1),

$$
e^{x}-x-1=x\left(e^{c}-1\right)>0
$$

which implies that for all $x<0$

$$
e^{x}>x+1
$$

Problem 6. Suppose that f is continuous on $[1,3]$ and differentiable on $(1,3)$. Futher suppose that $f(1)=7$ and $f^{\prime}(x)<1$ for all $x \in(1,3)$. Prove, using the Mean Value Theorem, that $f(3)<9$.

Solution. Since f is continuous on $[1,3]$ and differentiable on $(1,3)$, it satisfies the conditions of the mean value theorem. So, there exists some $c \in(1,3)$ such that

$$
f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}
$$

Since $f^{\prime}(x)<1$ for all $x \in(1,3), f^{\prime}(c)<1$. Rearranging shows

$$
\begin{aligned}
f(3) & =(3-1) f^{\prime}(c)+f(1) \\
& =2 f^{\prime}(c)+f(1) \\
& <2(1)+7<9
\end{aligned}
$$

Problem 7. Recall that the Gamma function is defined as $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$.
(a) Use this definition of the Gamma function to evaluate $\Gamma(2)$.
(b) Determine the value of the (convergent) improper integral $\int_{0}^{\infty} t^{30} e^{-t} d t$.

Solution. (a) We integrate by parts.

$$
\Gamma(2)=\int_{0}^{\infty} t^{2-1} e^{-t} d t=\int_{0}^{\infty} t e^{-t} d t
$$

Let

$$
u=t, \quad d v=e^{-t} d t, \quad d u=d t, \quad v=-e^{-t}
$$

We then have

$$
\begin{aligned}
\int_{0}^{\infty} t e^{-t} d t & =-\left.t e^{-t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-t} d t \\
& =-\left.t e^{-t}\right|_{0} ^{\infty}-\left.e^{-t}\right|_{0} ^{\infty} \\
& =-\lim _{s \rightarrow \infty} s e^{-s}+1
\end{aligned}
$$

To evaluate $\lim _{s \rightarrow \infty} s e^{-s}$ we use L'Hopitals Rule.

$$
\begin{aligned}
\Gamma(2) & =-\lim _{s \rightarrow \infty} s e^{-s}+1 \\
& \stackrel{\mathrm{H}}{=}-\left(\lim _{s \rightarrow \infty}\left(-e^{-s}\right)\right)+1=1
\end{aligned}
$$

(b) $\int_{0}^{\infty} t^{30} e^{-t} d t$ is equal to $\Gamma(31)$. From part (a) we found that $\Gamma(2)=1$. We know that the Gamma function is a continuous version of the factorial, and on the positive integers $\Gamma(n)=(n-1)$!. Therefore $\int_{0}^{\infty} t^{30} e^{-t} d t=\Gamma(31)=30!$.
Problem 8. Use the Comparison Theorem for improper integrals to determine the convergence of

$$
\int_{0}^{1} \frac{1}{\sqrt{x^{3}+x}} d x
$$

Solution. For all $x \in(0,1), x^{3}+x \geq x$. It follows that $\sqrt{x^{3}+x} \geq \sqrt{x}$ as well. Taking inverses, $\frac{1}{\sqrt{x^{3}+x}} \leq$ $\frac{1}{\sqrt{x}}$ for all $x \in(0,1)$. Further, $\frac{1}{\sqrt{x^{3}+x}} \geq 0$ for all $x \in(0,1)$. Then, by the comparison test,

$$
\begin{aligned}
0 \leq \int_{0}^{1} \frac{1}{\sqrt{x^{3}+x}} d x & \leq \int_{0}^{1} \frac{1}{\sqrt{x}} d x \\
& =\left.2 \sqrt{x}\right|_{0} ^{1}
\end{aligned}
$$

Since this is finite, $\int_{0}^{1} \frac{1}{\sqrt{x^{3}+x}} d x$ converges.
Problem 9. Consider the sequence given recursively by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right)
$$

(a) Calculate a_{2} and a_{3}.
(b) Assume that $\left\{a_{n}\right\}$ converges, and that $\lim _{x \rightarrow \infty} a_{n}=L$. Find L.

Solution. (a) We compute a_{2} and a_{3}.

$$
\begin{gathered}
a_{2}=\frac{1}{2}\left(a_{1}+\frac{2}{a_{1}}\right)=\frac{1}{2}\left(2+\frac{2}{2}\right)=\frac{3}{2} \\
a_{3}=\frac{1}{2}\left(\frac{3}{2}+\frac{4}{3}\right)=\frac{17}{12}
\end{gathered}
$$

(b) Let $L=\lim _{n \rightarrow \infty} a_{n}$. Assuming $\left\{a_{n}\right\}$ converges, we can compute

$$
L=\frac{1}{2}\left(L+\frac{2}{L}\right) .
$$

Solving this is equivalent to solving $L^{2}=2$. Since a_{n} is always positive, $L=\sqrt{2}$.
Problem 10. Determine whether the sequence given by

$$
a_{n}=\frac{(\ln (n))^{2}}{n}
$$

converges or diverges. If it converges, find its limit.

Solution.

Solution 1:

$$
\lim _{n \rightarrow \infty} \frac{(\ln n)^{2}}{n}=\lim _{n \rightarrow \infty} \frac{2(\ln n) \cdot 1 / n}{1}=\lim _{n \rightarrow \infty} \frac{2 \ln n}{n}=\lim _{n \rightarrow \infty} \frac{2}{n}=0 .
$$

Solution 2: Since $\ln (n)$ and n are both positive for all $n>2, \frac{(\ln (n))^{2}}{n}$ is also positive for all $n>2$. Hence, it is bounded below by zero.

Let $f(x)=\sqrt{x}-(\ln x)^{2}$. We will show that $f(x)$ is positive for all $x>1$, and this will imply $\frac{(\ln (n))^{2}}{n} \leq$ $\frac{\sqrt{n}}{n}$ for all $n>1 . f(1)=1>0$. If its derivative is always positive, then $f(x)$ will be increasing and $f(x)$ will positive for all $x>1$. Its derivative $f^{\prime}(x)=\frac{1}{2}\left(\frac{1}{\sqrt{x}}\right)-\frac{2 \ln x}{x}$ is positive if and only if $\frac{1}{2} \sqrt{x}-2 \ln x$ is positive. This is positive for $x=1$, and taking the second derivative shows that $f^{\prime}(x)$ is increasing when $x>1$. This implies $f(x)=\sqrt{x}-(\ln x)^{2}$ is always positive, so $\sqrt{x} \geq(\ln x)^{2}$. We have, for all $x>1$, the inequalities

$$
0 \leq \frac{(\ln (n))^{2}}{n} \leq \frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}
$$

Taking the limit as n approaches infinity,

$$
0 \leq \lim _{n \rightarrow \infty} \frac{(\ln (n))^{2}}{n} \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

By the Squeeze Theorem we conclude that $a_{n}=\frac{(\ln (n))^{2}}{n}$ converges to 0 as n approaches infinity.
Problem 11. (a) State the $\epsilon-N$ definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) Prove, using the definition asked for in part (a), that

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0
$$

Solution. (a) A sequence $\left\{a_{n}\right\}$ is said to converge to a limit L if for every number $\epsilon>0$, there exists a number $N \in \mathbb{N}$ such that for every $n>N,\left|a_{n}-L\right|<\epsilon$.
(b) Fix $\epsilon>0$. Take $N \in \mathbb{N}$ such that $N>e^{1 / \epsilon}$. Then, for all $n>N$,

$$
\begin{aligned}
\left|\frac{1}{\ln n}\right| & \leq\left|\frac{1}{\ln N}\right| \\
& \leq\left|\frac{1}{\ln e^{\frac{1}{\epsilon}}}\right|=\frac{1}{\left(\frac{1}{\epsilon}\right)}=\epsilon
\end{aligned}
$$

The first inequality holds because $\ln n$ is increasing. We conclude $\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$.

