Practice Midterm #1
Questions Drawn from 2011 Tests/Exams

1. Using the definition of the limit, prove that
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2. Determine whether the following sequences are convergent or divergent.

If a sequence is convergent, find its limit. Justify your answers.
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3. (a) Give an example of a sequence which is bounded, but not conver-

gent.

(b) Give an example of a sequence which is not bounded above and

not bounded below.



4. Evaluate the integrals

(a) / 12—290 dx.
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5. Evaluate / o S¢” + 2z dz.
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6. Determine whether the improper integral dx converges or
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diverges.
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7. Determine whether the improper integral / dx converges or
1

diverges.



8. Suppose that f is a function differentiable on (0,00) and continuous
on [0,00), such that f(1) =1 and f’(z) > 1 for all z > 1. Prove that
f(z) > x for all z > 1.



9. Let {a,} -, be asequence satisfying a,, > 1/2 for all n, and lim Gntl _
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0o. Use the definition of divergence to infinity directly to prove that

lim a, = cc.
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