CALCULUS 1501 WINTER 2013

HOMEWORK ASSIGNMENT 1.

Due January 24.

1.1. Prove that the function $f(x)=x^{3}$ is differentiable everywhere.
1.2. Formulate and prove a statement similar to Lemma 1.8 for the case when $f^{\prime}\left(x_{0}\right)<0$. (See Lecture 1 of the Course Notes).
1.3. Give example of a function which is continuous on the interval $(-\infty, 0]$ but has neither a global maximum nor a global minimum value.
1.4. Prove that if a nonconstant function $f(x)$ satisfies the conditions of Rolle's theorem on the interval $[a, b]$, then there exist points x_{1} and x_{2} on the interval (a, b) such that $f^{\prime}\left(x_{1}\right)<0$ and $f^{\prime}\left(x_{2}\right)>0$.
1.5. On the interval $(0,2)$ there exists a point c such that the tangent line to the graph of the function $y=x^{3}$ at the point $\left(c, c^{3}\right)$ is parallel to the straight line passing through the points $(0,0)$ and $(2,8)$.
(i). Explain without calculations why such point c necessarily exists.
(ii). Find c.
1.6. Prove using the Mean Value Theorem: $\frac{x}{1+x}<\ln (1+x)$, for $x>0$.
1.7. Show that the equation $x^{4}+4 x+c=0$ has at most two real roots. Here c is an arbitrary constant. (Hint: argue by contradiction - suppose that there are three different roots. Now try to use Rolle's theorem.) [This is Problem 20 in Section 4.2 of the textbook (p. 289).]

