CALCULUS 1501 WINTER 2013

HOMEWORK ASSIGNMENT 3.

Due February 28.
3.1. Using only the $\epsilon-N$ definition of convergence of a sequence prove

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+2}=\frac{2}{3}
$$

3.2. Recall that the Fibonacci sequence is defined by

$$
f_{1}=f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad \text { for } n>2
$$

Consider a sequence

$$
s_{1}=1, \quad s_{n}=\frac{f_{n+1}}{f_{n}} \text { for } n>1
$$

Assume that s_{n} converges. Find its limit.
3.3. Let $\left\{s_{n}\right\}$ be defined as

$$
s_{1}=0.3, s_{2}=0.33, s_{3}=0.333, \ldots
$$

Prove that $\left\{s_{n}\right\}$ converges.
3.4. Find the limit of the sequence

$$
\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots\}
$$

3.5. Determine convergence of the following series
(a) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$,
(b) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{3}}$,
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$.
3.6. Give example of a pair of series $\sum a_{n}$ and $\sum b_{n}$ with positive terms with the property that $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=0$, and $\sum b_{n}$ diverges, but $\sum a_{n}$ converges.
3.7. Prove that if $a_{n}>0$ and $\lim _{n \rightarrow \infty} n a_{n} \neq 0$, then $\sum a_{n}$ is divergent.
3.8. Find all positive values of b for which the series $\sum_{n=1}^{\infty} b^{\ln n}$ converges.

