CALCULUS 1501 WINTER 2013

HOMEWORK ASSIGNMENT 5.

Due March 28.

5.1. Let $\left\{f_{n}\right\}$ be the Fibonacci sequence, given by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$, for $n>2$. Use Problem 3.2 (Homework 3) to assess the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{1}{f_{n}}
$$

5.2. Find a power series representation (centred at $x=0$) of the function

$$
f(x)=\frac{x^{2}}{(1-2 x)^{2}}
$$

and find its radius of convergence.
5.3. Evaluate the integral

$$
\int_{0}^{1} \frac{\ln (1-x)}{x} d x
$$

Hint: Use Taylor series expansion and the identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
5.4. Find the arclength function for the curve $y=\frac{1}{3} x^{3}+\frac{1}{4 x}$ with starting point $P\left(1, \frac{7}{12}\right)$.
5.5. Graph the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}, \frac{1}{2} \leq x \leq 1$. Find its length.
5.6. Find parametric equations for the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a>0, b>0$ are constants.
5.7. Find a Cartesian equation of the curve $x=\ln t, y=\sqrt{t}, t>1$. Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

