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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

1. Mean Value Theorem

1.1. Review: limit, continuity, differentiability. We denote by R the set of real numbers. A
domain D of R is any subset of R. Typically this will be on open interval (a, b) or a closed interval
[a, b]. A function of a real variable is a function f : D → R, where D is a domain of R.

Definition 1.1 (The ǫ− δ Definition). We say that a function f(x) has a limit L as x approaches
a point x0 and write lim

x→x0

f(x) = L, if for any ǫ > 0 there exists δ > 0 such that whenever

0 < |x− x0| < δ (and x ∈ D) we have |f(x) − L| < ǫ.

The meaning of the above definition is that by choosing a sufficiently small interval (x0−δ, x0+δ)
of the point x0 we can ensure that the values of f(x) on this interval (excluding x0) do not deviate
from L by more than ǫ.

Example 1.1. We will use this definition to prove that limx→0
sinx

x
= 1. For this we need to show

that for any ǫ > 0, there exists a choice of δ > 0 such that
∣

∣

∣

∣

sinx

x
− 1

∣

∣

∣

∣

< ǫ, whenever |x| < δ.

First we recall the following inequality from trigonometry: for 0 < x < π/2,

(1.1) sinx < x < tanx.

If we divide sinx by the three terms in the above inequality we obtain

sinx

sinx
>

sinx

x
>

sinx

tan x
⇒ 1 >

sinx

x
> cosx.

From this we conclude that

0 < 1 − sinx

x
< 1 − cos x = 2 sin2 x

2
< 2 sin

x

2
< x,

where in the last step we again used inequality (1.1). It follows that
∣

∣

∣

∣

sinx

x
− 1

∣

∣

∣

∣

< |x|.

The same inequality holds for x < 0 because sin(−x)
−x

= sin x
x

. So, given ǫ > 0, we can take

δ = min{ǫ, π/2} to satisfy the definition of limit. ⋄
Definition 1.2. We say that a function f : D → R is continuous at a point x0 ∈ D if

(1.2) lim
x→x0

f(x) = f(x0).

Using the ǫ − δ definition this can be stated as follows: given ǫ > 0, there exists δ > 0 such that
whenever |x− x0| < δ we have |f(x) − f(x0)| < ǫ.
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Example 1.2. Let f : R → R be defined as f(x) = x. Let x0 be any real number. Then f(x) is
continuous at x0. Indeed, using the ǫ − δ definition we have |f(x) − f(x0)| = |x − x0| < ǫ. This
inequality can be ensured by taking δ = ǫ. ⋄
Theorem 1.3. If f and g are continuous functions on a domain D, then so are the functions f+g,
f · g, and c · f , where c is any constant. The function f/g is continuous at all points of D where
g 6= 0. Further, if g is a function defined on the range of f , then the function g ◦ f = g(f(x)) is
continuous on D.

Using the above theorem and the fact that f(x) = x is a continuous function as shown in
Example 1.2, we conclude that any polynomial is a continuous function, and any rational function
(the quotient of two polynomials) is continuous at all points where the denominator does not vanish.

Example 1.3. Let f(x) =
√
x. We will use the ǫ − δ definition to show that this function is

continuous at any point x0 > 0. Observer that

|
√
x−√

x0| =
(|√x−√

x0)(
√
x+

√
x0)|√

x+
√
x0

=
|x− x0|√
x+

√
x0

<
|x− x0|√

x0

Now, let ǫ > 0 be arbitrary. We choose δ = ǫ
√
x0 (x0 is a fixed number!). Then for |x − x0| < δ,

we have

|
√
x−√

x0| <
|x− x0|√

x0
<
ǫ
√
x0√
x0

= ǫ,

which proves the continuity. ⋄
Example 1.4. Let

f(x) =

{

0, x 6= 0,

1, x = 0.

Then limx→0 f(x) exists and equals zero, but it differs from the value of f at the origin since
f(0) = 1. Therefore, equation (1.2) does not hold, and f(x) is not continuous at the origin.
However, letting f(0) = 0 will make this function continuous everywhere. ⋄
Example 1.5 (Dirichlet’s function). Recall that a rational number is the quotient of two integers.
The set of all rational numbers is denoted by Q. All real numbers that are not rational are called
irrational. They form a set R \ Q. Define

d(x) =

{

1, x ∈ Q,

0, x ∈ R \ Q.

This function is discontinuous at all points. Indeed, let x0 be any real number, say x0 is rational.
Then for any δ > 0, the interval (x0 − δ, x0 + δ) necessarily contains an irrational number x, and
then, |d(x) − d(x0)| = 1. Thus, for ǫ < 1, no choice of δ will satisfy the condition of Definition 1.2.
A similar argument will work if x0 is irrational. ⋄
Example 1.6. Let

(1.3) f(x) =

{

sin 1
x
, x 6= 0,

0, x = 0.

The function f (see Fig. 1) is defined for all x. It is continuous for all x 6= 0 because it is a
composition of a continuous functions 1/x and sinx. But f(x) does not have a limit as x → 0
(why?), and therefore f(x) is not continuous at the origin. Note that there is no choice of f(0)
that will make this function continuous at the origin. ⋄
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Figure 1. The graph of sin 1
x

Figure 2. The graph of x sin 1
x

Example 1.7. Let

f(x) =

{

x sin 1
x
, x 6= 0

0, x = 0
.

This function (see Fig. 2) is continuous everywhere. To prove the continuity at the origin, let us
verify the ǫ− δ definition. We have

|f(x) − f(0)| =

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

< ǫ.

Since |x sin 1
x
| < |x| for all x 6= 0, we have

|f(x) − f(0)| =

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

≤ |x| < ǫ,

and so we may take δ = ǫ. Intuitively, lim
x→0

x sin
1

x
= 0 because sin 1

x
is bounded between −1 and 1,

whereas x approaches zero. ⋄
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Figure 3. The graph of x2 sin 1
x

Definition 1.4. Let f(x) be defined on an interval D ⊂ R. Let x0 ∈ D. We say that f(x) is
differentiable at x0 if the limit

(1.4) lim
h→0

f(x0 + h) − f(x0)

h

exists. The value of the limit is defined to be f ′(x0), the derivative of f at x0.

Example 1.8. Let us apply the above definition to the function f(x) = x2. The expression under
the limit in equation (1.4) becomes

(x0 + h)2 − x2
0

h
=
x2

0 + 2x0h+ h2 − x2
0

h
= 2x0 + h.

Clearly, the limit of the above expression equals 2x0, as h→ 0. Thus, we proved that f(x) = x2 is
differentiable at every point, and (x2)′ = 2x. ⋄
Example 1.9. Let

f(x) =

{

x sin 1
x
, x 6= 0

0, x = 0
.

This function is continuous but not differentiable at the origin. The continuity was shown in
Example 1.7. As for nondifferentiability, we have

lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

h sin 1
h

h
= lim

h→0
sin

1

h
,

which does not exist. ⋄
Example 1.10. Let

f(x) =

{

x2 sin 1
x
, x 6= 0

0, x = 0
.

This function (see Fig. 3) is continuous everywhere because it is the product of continuous
functions x and x sin 1/x (as discussed in Example 1.7). To prove differentiability of this function
at the origin let us compute the corresponding limit in (1.4).

lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

h2 sin 1
h

h
= lim

h→0
h sin

1

h
.
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As we saw in Example 1.7 this limit equals 0. Thus f ′(0) = 0. ⋄

1.2. Mean Value Theorem.

Definition 1.5. Suppose f(x) is a function defined on a domain D. The function f(x) is said to
have an absolute (global) maximum at a point c ∈ D, if f(c) ≥ f(x) for all x ∈ D. The number
f(c) is called the absolute (global) maximum value of f on the domain D. The function f has an
absolute (global) minimum at c ∈ D, if f(c) ≤ f(x) for all x ∈ D. The number f(c) is called the
absolute (global) minimum value of f on the domain D.

Example 1.11. Consider a constant function f(x) = c, for some c ∈ R. Then every point x is a
global maximum and minimum of f(x). On the other hand, the function f(x) = x3 for x ∈ R does
not attain a global maximum or minimum. The same is true if we consider this function on any
open interval (a, b).

Theorem 1.6. If f(x) is continuous on a closed interval [a, b], then f(x) attains a maximum and
a minimum value.

The above theorem can be proved using the Axiom of Completeness for real numbers which will
be stated when we discuss sequences.

Definition 1.7. The function f defined on a domain D has a local maximum at a point c ∈ D, if
there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≥ f(x) for all x ∈ I. The function f has
a local minimum at c ∈ D, if there is an open interval I ⊂ D, such that c ∈ I, and f(c) ≤ f(x) for
all x ∈ I.

Maxima and minima are called extreme points, or extrema.

Lemma 1.8. Let f(x) be a differentiable function on an interval (a, b). Suppose x0 ∈ (a, b). If
f ′(x0) > 0, then for x < x0 close to x0 we have f(x) < f(x0), and f(x) > f(x0) for x > x0 and
close to x0.

The lemma above simply states that if f ′(x0) > 0, then f(x) is an increasing function near x0.
A similar statement holds if we assume that f ′(x0) < 0 (see Exercise 1.6).

Proof. By definition,

f ′(x0) = lim
x→x0

f(x) − f(x0)

x− x0
.

If f ′(x0) > 0, then there exists a small interval (x0 − δ, x0 + δ) such that

f(x) − f(x0)

x− x0
> 0, for x 6= x0.

Suppose first that x0 < x < x0 + δ. Then x− x0 > 0, and from the above inequality we conclude
that f(x) − f(x0) > 0, or f(x) > f(x0). Now, if x0 − δ < x < x0, then x − x0 < 0, and the same
inequality shows that f(x) < f(x0). �

Theorem 1.9 (Fermat’s Theorem). 1 Let f(x) be defined on an interval [a, b], and suppose that
f(x) attains a maximal (or minimal) value at a point c ∈ (a, b). If f(x) is differentiable at x = c,
then f ′(c) = 0.

1This is a modern formulation of the theorem. It captures the essence of Fermat’s method for finding maximal

and minimal values of a function. The notion of derivative was not yet developed at Fermat’s time.
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Proof. We will assume that c is a maximum of f(x), the case when c is a minimum can be treated
in a similar way. Arguing by contradiction, suppose that f ′(c) 6= 0. Then either f ′(c) > 0 or
f ′(c) < 0. If f ′(c) > 0, then Lemma 1.8 implies that f(x) > f(c) for x > c with x sufficiently close
to c. Similarly, if f ′(c) < 0, then f(x) > f(c) for x < c. In both cases we see that f(c) cannot be
the maximum value of the function f . This contradiction proves the theorem. �

Geometrically, Fermat’s theorem states that at extreme points the tangent line to the graph of
the function f is horizontal, which should be intuitively clear. Also note, that if a maximal or a
minimum value is attained at the end point of the interval [a, b], then Fermat’s theorem need not
to hold.

Definition 1.10. A point c is called a critical point of a differentiable function f(x) if f ′(c) = 0.

Fermat’s theorem now can be stated as follows: if c is a local maximum or minimum of a function
f(x), then c is a critical point of f . The converse to this statement is false: if f ′(c) = 0, then it
does not follow in general that c is a local maximum or a local minimum of f(x). For example, if
f(x) = x3, then f ′(0) = 0, but the origin is not an extreme point of x3.

Theorem 1.11 (Rolle’s Theorem). 2 Suppose f(x) is continuous on the interval [a, b], differentiable
on (a, b), and f(a) = f(b). Then there exists a number c ∈ (a, b) such that f ′(c) = 0.

Proof. By Theorem 1.6, a continuous function on a closed interval [a, b] attains its maximum value,
say, M , and its minimum value, say, m. Consider two cases:

1. Suppose M = m. Then f(x) on [a, b] is a constant function, since m ≤ f(x) ≤M = m for all
x ∈ [a, b]. Therefore, f ′(x) = 0 for all x.

2. Suppose M > m. Since f(a) = f(b), we know that either M or m is attained at some point
c inside the interval (a, b), (i.e., not at the end points of the interval). In this case, it follows from
Fermat’s theorem that f ′(c) must be zero. �

Geometrically, Rolle’s theorem states that if f(a) = f(b), then there is a point c between a and
b such that the tangent line to the graph of f at point c is horizontal. This occurs at a local
maximum or a local minimum of f(x).

Theorem 1.12 (Mean Value Theorem). Suppose that f(x) is continuous on [a, b] and differentiable
on (a, b). Then there exists a point c ∈ (a, b) such that

f(b) − f(a)

b− a
= f ′(c).

Proof. Define an auxiliary function

F (x) = f(x) − f(a) − f(b) − f(a)

b− a
(x− a).

This function satisfies the conditions of Rolle’s theorem. Indeed, it is continuous on [a, b], because
it is a difference of a continuous function f(x) and a linear (hence continuous!) function

f(a) − f(b) − f(a)

b− a
(x− a).

On the interval (a, b), we have

F ′(x) = f ′(x) − f(b) − f(a)

b− a
.

2Despite the name, Michel Rolle only suggested this result for polynomials in 1691.
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Finally, F (a) = f(a)− f(a) = 0, and F (b) = f(b)− f(a)− f(b)−f(a)
b−a

(b− a) = f(b)− f(a)− (f(b)−
f(a)) = 0, and so F (a) = F (b).

Therefore, we may apply Rolle’s theorem to the function F (x), and so there exists a point
c ∈ (a, b) such that F ′(c) = 0. This means that

f ′(c) − f(b) − f(a)

b− a
= 0.

Hence,

f ′(c) =
f(b) − f(a)

b− a
,

which is exactly what we wanted to prove. �

Using the Mean Value Theorem we can now prove that only constant functions have everywhere
vanishing derivatives.

Corollary 1.13. Suppose f(x) is a differentiable functions such that f ′(x) = 0 for all x. Then
f(x) is a constant function.

Proof. Choose any two points a and b in the domain of f(x), say, a < b. By the Mean Value
Theorem, there exists a point c ∈ (a, b) such that

f(b) − f(a)

b− a
= f ′(c) = 0.

It follows then that f(b) = f(a). But this means that f(x) is a constant function. �

1.3. Proving inequalities. The Mean Value Theorem can be used for proving inequalities.

Example 1.12. Prove that if x > 0, then

ln(1 + x) < x.

Solution. Let a = 0, b = x, and f(x) = ln(1 + x) − x. Then f ′(x) = 1
1+x

− 1 = − x
1+x

. By the

Mean Value Theorem applied to the function f on the interval [a, b] = [0, x], there exists a point
c ∈ (0, x) such that

f ′(c) =
f(x) − f(0)

x− 0
,

or

(1.5) − c

1 + c
=

ln(1 + x) − x

x
.

Note that c > 0, and therefore, − c
1+c

< 0. Therefore, equation (1.5) implies

ln(1 + x) − x

x
< 0.

Since x > 0, the numerator in the above inequality must be negative, i.e.,

ln(1 + x) − x < 0,

which is what we had to prove. ⋄
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Example 1.13. Prove that if x > 0, and n > 1, then

(1 + x)n > 1 + nx.

Solution. Let a = 0, and b = x, and f(x) = (1 + x)n − (1 + nx). Then f ′(x) = n(1 + x)n−1 − n,
and by the Mean Value Theorem, we have

(1.6) n(1 + c)n−1 − n =
(1 + x)n − (1 + nx) − 0

x

for some c ∈ (0, x). Note that 1 + c > 1, and for n > 1, we have (1 + c)n−1 > 1. Therefore,

n(1 + c)n−1 − n > 0.

From this and equation (1.6) we conclude that

(1 + x)n − (1 + nx)

x
> 0.

Since x > 0, this yields the desired inequality. ⋄

Exercises

1·1. Use a similar strategy as in Example 1.3 to show that the following functions are continuous
on the specified domain:
(a) f(x) = 2x+ 1, for x0 ∈ R,
(b) f(x) = x2, for x0 ∈ R,
(c) f(x) = 1/x for x0 6= 0.

1·2. Prove, using the definition, that the function f(x) = x3 is differentiable at all points.
1·3. Negate the ǫ− δ definition of the limit to write what it means that a function f(x) defined

for x 6= 0 does not have a limit as x approaches the origin. Use this to prove that the
function

f(x) =

{

1, x > 0,

0, x < 0.

does not have a limit at zero.
1·4. Show that the function given by (1.3) is not continuous at the origin.
1·5. Show that the function in Example 1.10 does not have the second order derivative at x = 0.
1·6. Formulate and prove a statement similar to Lemma 1.8 for the case when f ′(x0) < 0.
1·7. Give an example of a function which is defined on the closed interval [0, 1] but is not

bounded there.
1·8. Give an example of a function which is continuous on the interval (−∞, 0] but does not

attain a global maximum and a global minimum.
1·9. Prove that if a polynomial p(x) vanishes at two points a and b, then there exists a point c

between a and b such that p′(c) = 0.
1·10. Prove that if a polynomial p(x) of degree 3 has 3 pairwise different (real) roots, then p′(x)

has exactly two (real) roots.
1·11. On the interval (0, 1) find a point c such that the tangent line to the graph of the function

y = x3 at the point (c, c3) is parallel to the straight line passing through the points (0, 0)
and (1, 1).

1·12. Prove that if a nonconstant function f(x) satisfies the conditions of Rolle’s theorem on the
interval [a, b], then there exist points x1 and x2 on the interval (a, b) such that f ′(x1) < 0
and f ′(x2) > 0.



CALC 1501 LECTURE NOTES 9

1·13. Prove that if f(x) is a 3 times differentiable function on x ≥ 0, and f(0) = f ′(0) = f ′′(0) =
0, and f ′′′(x) > 0 for x > 0, then also f(x) > 0 for x > 0.

1·14. (Cauchy’s Theorem) If the functions x = φ(t) and y = ψ(t) are continuous on the interval
[a, b] and differentiable on (a, b) with φ′(t) 6= 0 for a < t < b, then there exists a point
ξ ∈ (a, b) such that

(1.7)
ψ(b) − ψ(a)

φ(b) − φ(a)
=
ψ′(ξ)

φ′(ξ)
.

Hint: Consider an auxiliary function h(x) = (ψ(b) − ψ(a))φ(x) − (φ(b) − φ(a))ψ(x).
1·15. Suppose that f(x) is a continuous function on [0,∞), differentiable on (0,∞), f(0) = 0, and

f ′(x) is an increasing function for x > 0. Prove that the function
f(x)

x
is also increasing

for x > 0.

In the next problems prove the given inequality using the Mean Value Theorem.

1·16. 2
√
x > 3 − 1

x
, for x > 1.

1·17. sinx < x, for x > 0.

1·18. cos x > 1 − x2

2
, for x > 0.

1·19. sinx > x− x3

6
, for x > 0.

1·20. tanx > x, for 0 < x < π
2 .

1·21. ex > 1 + x, for x > 0.

1·22. ex > 1 + x+
x2

2
, for x > 0.

1·23. ex > 1 + x+
x2

2
+ · · · + xn

n!
, for x > 0. (Hint: use the mathematical induction)


