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RASUL SHAFIKOV

1. MEAN VALUE THEOREM

1.1. Review: limit, continuity, differentiability. We denote by R the set of real numbers. A
domain D of R is any subset of R. Typically this will be on open interval (a,b) or a closed interval
[a,b]. A function of a real variable is a function f: D — R, where D is a domain of R.

Definition 1.1 (The € — § Definition). We say that a function f(z) has a limit L as x approaches
a point xg and write lim f(x) = L, if for any € > 0 there exists 6 > 0 such that whenever
T—T0

0<|z—z9| <6 (and x € D) we have |f(x) — L| < e.

The meaning of the above definition is that by choosing a sufficiently small interval (zo—9d, z¢+0)
of the point xyp we can ensure that the values of f(x) on this interval (excluding z) do not deviate
from L by more than e.

sinx
T

= 1. For this we need to show

Example 1.1. We will use this definition to prove that lim,_.g
that for any € > 0, there exists a choice of § > 0 such that

sin x

- 1‘ < €, whenever |z| <.
x

First we recall the following inequality from trigonometry: for 0 < z < /2,
(1.1) sinr < x < tanx.

If we divide sin z by the three terms in the above inequality we obtain

sin x sin x sin x sin x
> >

1> > cos .

sinx T tanx
From this we conclude that
sinx

0<1-— <1—cosx:251n2%<2sing<x,

x
where in the last step we again used inequality (1.1). It follows that

The same inequality holds for x < 0 because w = sliZ G5 given € > 0, we can take

x
0 = min{e, 7/2} to satisfy the definition of limit. ©
Definition 1.2. We say that a function f: D — R is continuous at a point xog € D if
(1.2) lim f(z) = f(z0).
T—T0

Using the ¢ — § definition this can be stated as follows: given € > 0, there exists 6 > 0 such that
whenever |x — xo| < 0 we have |f(x) — f(zo)| < €.
1
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Example 1.2. Let f: R — R be defined as f(z) = z. Let xy be any real number. Then f(z) is
continuous at xg. Indeed, using the € — ¢ definition we have |f(x) — f(xo)| = |z — zo| < €. This
inequality can be ensured by taking § = €. ¢

Theorem 1.3. If f and g are continuous functions on a domain D, then so are the functions f+g,
f-g, and c- f, where c is any constant. The function f/g is continuous at all points of D where
g # 0. Further, if g is a function defined on the range of f, then the function go f = g(f(x)) is
continuous on D.

Using the above theorem and the fact that f(x) = x is a continuous function as shown in
Example 1.2, we conclude that any polynomial is a continuous function, and any rational function
(the quotient of two polynomials) is continuous at all points where the denominator does not vanish.

Example 1.3. Let f(z) = /. We will use the € — § definition to show that this function is
continuous at any point xg > 0. Observer that

N (Ve — vEo) (Ve + vao)l _ |z —aol _ o=l
VT + /T VT + /g Vo

Now, let € > 0 be arbitrary. We choose § = €,/xy (z¢ is a fixed number!). Then for |z — o] < 4,

we have

|z — x|  ey/Zo
— \/ < < —
Ve = Vi Vo N

which proves the continuity. ¢

Example 1.4. Let

w={r ot

Then lim,_,o f(x) exists and equals zero, but it differs from the value of f at the origin since
f(0) = 1. Therefore, equation (1.2) does not hold, and f(z) is not continuous at the origin.
However, letting f(0) = 0 will make this function continuous everywhere. ¢

Example 1.5 (Dirichlet’s function). Recall that a rational number is the quotient of two integers.
The set of all rational numbers is denoted by Q. All real numbers that are not rational are called
irrational. They form a set R\ Q. Define

)L, 2 eqQ,
dz) = {0, z €R\Q.

This function is discontinuous at all points. Indeed, let zg be any real number, say x( is rational.
Then for any § > 0, the interval (zg — 0, xg + J) necessarily contains an irrational number z, and
then, |d(z) — d(zo)| = 1. Thus, for € < 1, no choice of ¢ will satisfy the condition of Definition 1.2.
A similar argument will work if xg is irrational. ¢

Example 1.6. Let

sin L T
(1.3 f<as>={0 noT

The function f (see Fig. 1) is defined for all z. It is continuous for all x # 0 because it is a
composition of a continuous functions 1/x and sinz. But f(x) does not have a limit as z — 0
(why?), and therefore f(z) is not continuous at the origin. Note that there is no choice of f(0)
that will make this function continuous at the origin. ¢
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F1GURE 1. The graph of sin%
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FI1GURE 2. The graph of xsin%

Example 1.7. Let

B wsin%, x#0
o=

This function (see Fig. 2) is continuous everywhere. To prove the continuity at the origin, let us
verify the € — § definition. We have

[f(z) = f(0)] =

T sin —‘ < €.
x
Since |zsin 1| < |z| for all z # 0, we have

[f(x) = f(O)] =

1
xsin—‘ <l|z| <e,
x

1
and so we may take § = e. Intuitively, lir% x sin — = 0 because sin % is bounded between —1 and 1,
r— x

whereas = approaches zero. ¢
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FIGURE 3. The graph of x? sin%

Definition 1.4. Let f(z) be defined on an interval D C R. Let xg € D. We say that f(x) is
differentiable at xq if the limit
(1.4) i £ @0+ h) = f(ao)
h—0 h
exists. The value of the limit is defined to be f'(xg), the derivative of f at xy.

Example 1.8. Let us apply the above definition to the function f(z) = x?. The expression under
the limit in equation (1.4) becomes

h 2 _ .2 2 220h }12 2
mﬁ}: 0 _ Tt xOth 20 — 20y + h.

Clearly, the limit of the above expression equals 2zg, as h — 0. Thus, we proved that f(z) =z
differentiable at every point, and (22)" = 2z. ¢

B xsin%, x#0
s A

This function is continuous but not differentiable at the origin. The continuity was shown in
Example 1.7. As for nondifferentiability, we have

_ hsin L 1
lim fO+h) — 1(0) = lim il A lim sin —,
h—0 h h—0 h h—0  h

2 is

Example 1.9. Let

which does not exist. ¢

Example 1.10. Let

0, z=0

This function (see Fig. 3) is continuous everywhere because it is the product of continuous
functions = and zsin1/x (as discussed in Example 1.7). To prove differentiability of this function
at the origin let us compute the corresponding limit in (1.4).

fO+h)—f(0) . hPsing

1
li = lim ——* = lim hAsin —.
foy T A T = e

201
{CE sing, x#0
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As we saw in Example 1.7 this limit equals 0. Thus f/(0) = 0. ¢
1.2. Mean Value Theorem.

Definition 1.5. Suppose f(x) is a function defined on a domain D. The function f(z) is said to
have an absolute (global) maximum at a point ¢ € D, if f(c) > f(x) for all z € D. The number
f(c) is called the absolute (global) maximum value of f on the domain D. The function f has an
absolute (global) minimum at ¢ € D, if f(c) < f(x) for all x € D. The number f(c) is called the
absolute (global) minimum value of f on the domain D.

Example 1.11. Consider a constant function f(x) = ¢, for some ¢ € R. Then every point z is a
global maximum and minimum of f(z). On the other hand, the function f(z) = 2 for z € R does
not attain a global maximum or minimum. The same is true if we consider this function on any
open interval (a,b).

Theorem 1.6. If f(x) is continuous on a closed interval [a,b], then f(x) attains a maximum and
a minimum value.

The above theorem can be proved using the Axiom of Completeness for real numbers which will
be stated when we discuss sequences.

Definition 1.7. The function [ defined on a domain D has a local mazimum at a point ¢ € D, if
there is an open interval I C D, such that ¢ € I, and f(c) > f(x) for allx € I. The function f has
a local minimum at ¢ € D, if there is an open interval I C D, such that ¢ € I, and f(c) < f(x) for
allx € 1.

Maxima and minima are called extreme points, or extrema.

Lemma 1.8. Let f(x) be a differentiable function on an interval (a,b). Suppose zo € (a,b). If
f(xo) > 0, then for x < xo close to xy we have f(x) < f(xo), and f(x) > f(xg) for x > xy and
close to xg.

The lemma above simply states that if f'(z¢) > 0, then f(z) is an increasing function near .
A similar statement holds if we assume that f/(x¢) < 0 (see Exercise 1.6).

Proof. By definition,

z—zo T — X
If f'(x0) > 0, then there exists a small interval (z¢ — d, 29 + ¢) such that

f(x) = f(x0)

Tr — X

>0, for z # xo.

Suppose first that g < © < g + . Then x — z¢p > 0, and from the above inequality we conclude
that f(x) — f(zo) > 0, or f(z) > f(xo). Now, if xg —§ < & < xp, then z — 29 < 0, and the same
inequality shows that f(z) < f(zo). O

Theorem 1.9 (Fermat’s Theorem). ! Let f(z) be defined on an interval [a,b], and suppose that
f(z) attains a mazimal (or minimal) value at a point ¢ € (a,b). If f(x) is differentiable at x = c,
then f'(c) = 0.

IThis is a modern formulation of the theorem. It captures the essence of Fermat’s method for finding maximal
and minimal values of a function. The notion of derivative was not yet developed at Fermat’s time.
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Proof. We will assume that ¢ is a maximum of f(x), the case when ¢ is a minimum can be treated
in a similar way. Arguing by contradiction, suppose that f’(¢) # 0. Then either f'(c¢) > 0 or
f'(c) < 0. If f(¢) > 0, then Lemma 1.8 implies that f(z) > f(c) for z > ¢ with z sufficiently close
to ¢. Similarly, if f'(¢) < 0, then f(x) > f(c) for x < ¢. In both cases we see that f(c) cannot be
the maximum value of the function f. This contradiction proves the theorem. O

Geometrically, Fermat’s theorem states that at extreme points the tangent line to the graph of
the function f is horizontal, which should be intuitively clear. Also note, that if a maximal or a
minimum value is attained at the end point of the interval [a, b], then Fermat’s theorem need not

to hold.
Definition 1.10. A point ¢ is called a critical point of a differentiable function f(x) if f'(c) = 0.

Fermat’s theorem now can be stated as follows: if ¢ is a local maximum or minimum of a function
f(z), then ¢ is a critical point of f. The converse to this statement is false: if f’(¢) = 0, then it
does not follow in general that ¢ is a local maximum or a local minimum of f(x). For example, if

f(x) = 23, then f(0) = 0, but the origin is not an extreme point of z3.

Theorem 1.11 (Rolle’s Theorem).  Suppose f(x) is continuous on the interval [a,b], differentiable
n (a,b), and f(a) = f(b). Then there exists a number ¢ € (a,b) such that f'(c) = 0.

Proof. By Theorem 1.6, a continuous function on a closed interval [a, b] attains its maximum value,
say, M, and its minimum value, say, m. Consider two cases:

1. Suppose M = m. Then f(x) on [a,b] is a constant function, since m < f(x) < M = m for all
x € [a,b]. Therefore, f'(z) =0 for all .

2. Suppose M > m. Since f(a) = f(b), we know that either M or m is attained at some point
¢ inside the interval (a,b), (i.e., not at the end points of the interval). In this case, it follows from
Fermat’s theorem that f’(c) must be zero. O

Geometrically, Rolle’s theorem states that if f(a) = f(b), then there is a point ¢ between a and
b such that the tangent line to the graph of f at point ¢ is horizontal. This occurs at a local
maximum or a local minimum of f(z).

Theorem 1.12 (Mean Value Theorem). Suppose that f(x) is continuous on [a,b] and differentiable
on (a,b). Then there exists a point ¢ € (a,b) such that

fO) = fla) _
b —a - f (C)
Proof. Define an auxiliary function

F) = f(@) - f@) - 10D )

This function satisfies the conditions of Rolle’s theorem. Indeed, it is continuous on [a, b], because
it is a difference of a continuous function f(z) and a linear (hence continuous!) function

fa) - TU=T )

On the interval (a,b), we have

Fb) ~ fa)

P/(w) = f(a) - 25—

2Despite the name, Michel Rolle only suggested this result for polynomials in 1691.
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. b)—f(a
Finally, F(a) = f(a) — f(a) = 0, and F(b) = f(b) = f(a) = LG=L2 (b —a) = f() = f(a) ~ (F(b) -
f(a)) =0, and so F(a) = F(b).
Therefore, we may apply Rolle’s theorem to the function F(z), and so there exists a point
¢ € (a,b) such that F'(c) = 0. This means that

/ f(b) — f(a)
f(c) . 0.
Hence,
oy S(0) = fla)
f (C) - b—a )
which is exactly what we wanted to prove. O

Using the Mean Value Theorem we can now prove that only constant functions have everywhere
vanishing derivatives.

Corollary 1.13. Suppose f(x) is a differentiable functions such that f'(x) = 0 for all x. Then
f(x) is a constant function.

Proof. Choose any two points a and b in the domain of f(x), say, a < b. By the Mean Value
Theorem, there exists a point ¢ € (a,b) such that

f) = fla) _
_— = g 0.
)T _
It follows then that f(b) = f(a). But this means that f(z) is a constant function. O

1.3. Proving inequalities. The Mean Value Theorem can be used for proving inequalities.

Example 1.12. Prove that if > 0, then

In(l+z) <z
Solution. Let @ = 0, b = z, and f(x) = In(1 + z) — 2. Then f'(z) = H—Lm — 1= —15. By the
Mean Value Theorem applied to the function f on the interval [a,b] = [0, z], there exists a point
¢ € (0,z) such that
1oy L) = £(0)

f (C) - T —0 )
or
(15) c :1n(1+:v)—:c.

T 1+c x
Note that ¢ > 0, and therefore, —%- < 0. Therefore, equation (1.5) implies

In(l+z)—=
x

< 0.
Since x > 0, the numerator in the above inequality must be negative, i.e.,
In(l+2x)—2z<0,

which is what we had to prove. ¢
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Example 1.13. Prove that if x > 0, and n > 1, then
(14+2)" >14 nx.

Solution. Let a = 0, and b = x, and f(z) = (1 + 2)" — (1 + nz). Then f'(x) = n(1 + z)"" ! —n,
and by the Mean Value Theorem, we have
(1+2)"—1+nx)—0

x

(1.6) n(l+c¢)" 1 —n=

for some ¢ € (0,7). Note that 1+ ¢ > 1, and for n > 1, we have (14 ¢)"~! > 1. Therefore,
n(l+c¢)" ' —n>0.
From this and equation (1.6) we conclude that

(142z)" = (1+nx)

> 0.

Since x > 0, this yields the desired inequality. ©

Exercises

1-1. Use a similar strategy as in Example 1.3 to show that the following functions are continuous
on the specified domain:
(a) f(z)=2x+1, for xg € R,
(b) f(z) = 22, for 2o € R,
(¢) f(x) =1/z for xg # 0.
1-2. Prove, using the definition, that the function f(z) = 23 is differentiable at all points.
1-3. Negate the € — d definition of the limit to write what it means that a function f(z) defined
for x # 0 does not have a limit as = approaches the origin. Use this to prove that the

function
1, x>0,
xr) =
/(@) {0, z < 0.

does not have a limit at zero.
1-4. Show that the function given by (1.3) is not continuous at the origin.
1-5. Show that the function in Example 1.10 does not have the second order derivative at z = 0.
1-6. Formulate and prove a statement similar to Lemma 1.8 for the case when f/(zg) < 0.
1.7. Give an example of a function which is defined on the closed interval [0,1] but is not
bounded there.
1-8. Give an example of a function which is continuous on the interval (—oo, 0] but does not
attain a global maximum and a global minimum.
1-9. Prove that if a polynomial p(z) vanishes at two points a and b, then there exists a point ¢
between a and b such that p’(c) = 0.
1-10. Prove that if a polynomial p(x) of degree 3 has 3 pairwise different (real) roots, then p'(x)
has exactly two (real) roots.
1-11. On the interval (0,1) find a point ¢ such that the tangent line to the graph of the function
y = x> at the point (¢, c®) is parallel to the straight line passing through the points (0,0)
and (1,1).
1-12. Prove that if a nonconstant function f(x) satisfies the conditions of Rolle’s theorem on the
interval [a, b], then there exist points x1 and x5 on the interval (a,b) such that f/(x1) <0
and f'(zq) > 0.



1-13.

1.14.

(1.7)

1-15.

1-16.
1.17.

1-18.

1-19.

1-20.
1.21.

1-22.

1.23.
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Prove that if f(z) is a 3 times differentiable function on x > 0, and f(0) = f'(0) = f”(0) =
0, and f"”(x) > 0 for = > 0, then also f(x) > 0 for x > 0.

(Cauchy’s Theorem) If the functions x = ¢(t) and y = 1(t) are continuous on the interval
[a,b] and differentiable on (a,b) with ¢'(t) # 0 for a < ¢t < b, then there exists a point
€ € (a,b) such that

$(®) (@) _ P
3(b) — pla) — ¢'(&)
Hint: Consider an auxiliary function h(z) = (¢(b) — ¢¥(a))p(z) — (¢(b) — ¢(a))p(x).

Suppose that f(z) is a continuous function on [0, co), differentiable on (0, c0), f(0) = 0, and

f(z)

f'(z) is an increasing function for = > 0. Prove that the function is also increasing

for x > 0.

In the next problems prove the given inequality using the Mean Value Theorem.

1
2y/x >3 ——, forx>1.
T

sinz <z, fora>0.

2
cosx>1—7, for z > 0.

3
. x
smx>x—E, for x > 0.

tanz >z, for 0 <z < 3.

e* >1+x, forx>0.

2

x
e$>1—|—x—i—7, for x > 0.

2 "

>4z +— 4t

5 —, forz>0. (Hint: use the mathematical induction)
n!



