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CALC 1501 LECTURE NOTES

RASUL SHAFIKOV

5. Series

5.1. Basic Definitions. Given a sequence of real numbers

a1, a2, a3, . . . , an, . . .

a formal expression

(5.1) a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
n=1

an

is called an infinite series, or just a series. We can add finitely many terms of the series to obtain

A1 = a1,

A2 = a1 + a2,

A3 = a1 + a2 + a3,

. . .

An = a1 + a2 + a3 + · · ·+ an,

. . .

The numbers A1, A2, . . . , An, . . . are called the partial sums of the series (5.1). They naturally form
a sequence {An} of partial sums. If A = limn→∞An and A is a finite number, then the series

∑
an

is called convergent, A is called its sum, and we write

A =
∞∑
n=1

an.

If the sequence {An} is divergent (i.e., A is infinite or does not exist), then the series (5.1) is also
called divergent.

Example 5.1. Perhaps the simplest example of an infinite series is the so-called geometric series

a+ aq + aq2 + · · ·+ aqn + · · · =
∞∑
n=0

aqn−1, a 6= 0.

Its partial sum for q 6= 1 equals

(5.2) An =
a− aqn

1− q
.

Indeed, by direct computation we obtain

An − qAn = (a+ aq + · · ·+ aqn−1)− q(a+ aq + · · ·+ aqn−1) = a− aqn,

from which equation (5.2) immediately follows.
1
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By taking the limit in (5.2), we see that if |q| < 1 then the geometric series converges with the
sum equal to a

1−q . If |q| ≥ 1, then the series diverges. In particular, if q = 1, then limAn is either

∞ or −∞, depending on the sign of a, and if q = −1, then the series takes the form

a− a+ a− a+ . . . ,

and the value of partial sums alternates between a and 0. To summarize, the geometric series
converges if |q| < 1, and

a+ aq + aq2 + · · ·+ aqn + · · · =
∞∑
n=0

aqn−1 =
a

1− q
.

�

Example 5.2. Consider the series

∞∑
n=1

n

(
1

2

)n

=
1

2
+

1

2
+

3

8
+

1

4
+ · · · .

This series resembles the geometric series, and we can try to find its sum using a similar technique.
Let Sn be a partial sum of the first n terms. Then

Sn −
1

2
Sn =

(
1

2
+

2

22
+

3

23
+ · · ·+ n

2n

)
−
(

1

22
+

2

23
+

3

24
+ · · ·+ n

2n+1

)

=
1

2
+

2− 1

22
+

3− 2

23
+ · · ·+ n− (n− 1)

2n
− n

2n+1
=

(
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n

)
− n

2n+1

The term in parentheses on the right-hand side of the above identity is the geometric series with
a = 1/2 and q = 1/2, its partial sum was computed in the previous example:

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n
=

1/2− 1/2(1/2)n

1− 1/2
= 1− (1/2)n.

From this we conclude that

(5.3) Sn =
1− (1/2)n − n/2n+1

1/2
= 2− 1

2n−1
− n

2n

It follows that Sn converges to 2 as n→∞. Thus,

∞∑
n=1

n

(
1

2

)n

= 2.

�

Example 5.3. Determine the convergence of the series

∞∑
n=1

1√
n
.

We estimate its partial sum:

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n
> n · 1√

n
=
√
n.

We see that the partial sums grow indefinitely as n goes to infinity. Thus this series diverges. �
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Let

∞∑
n=1

an be a series, and Am =

m∑
n=1

an be the partial sum. The quantity

(5.4) Rm =
∞∑
n=1

an −Am =
∞∑

n=m+1

an

is called the remainder of the series. We first observe that the series
∑
an converges if and only if any

remainder Rm converges (as a series). Therefore, we may remove any finite (possibly very large!)
number of elements from the series without affecting its convergence (or divergence). Further, if
the series

∑
an converges, then by taking limit in (5.4) as m→∞ we see that Rm → 0. The next

theorem gives a simple test to verify divergence of certain series.

Theorem 5.1. If the series

∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. Let An = a1 + · · · + an. Then, since the series
∑
an converges, limAn exists as n → ∞.

Hence, an = An −An−1, and so limn→∞ an = limn→∞(An −An−1) = 0. �

The contrapositive formulation of this theorem is sometimes called the Test for Divergence: if
limn→∞ an 6= 0, then the series

∑
an diverges. For example, the series

∞∑
n=1

1

1 + sn

diverges for 0 < s ≤ 1 because 1/(1 + sn) does not converge to zero as n → ∞. It is, however,
wrong in general to conclude from the convergence of {an} to zero that the series

∑
an converges.

For instance, in Example 5.3 the series diverges, yet lim an = 0.
Suppose now that the series

∑
an consists of positive terms. Then partial sums {An} form an

increasing sequence. If this sequence is bounded, then by the Monotone Convergence Theorem, it
follows that the sequence of partial sums (and therefore the series) converges. On the other hand,
if the sequence of partial sums is unbounded, then the series diverges. We illustrate this in the next
example.

Consider the so-called harmonic series1 given by

(5.5) 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑
n=1

1

n
.

Indeed, starting from the third term we can divide the series into groups consisting of 2, 4, 8, . . . , 2k, . . .
terms in each group:

1

3
+

1

4︸ ︷︷ ︸
2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4

+
1

9
+ · · ·+ 1

16︸ ︷︷ ︸
8

+ . . . .

1The reason for the name is that every term of the series is the harmonic mean of the two neighbouring terms.
Recall that the harmonic mean of two numbers a and b equals 2ab

a+b
. The harmonic mean is an important notion in

geometry and physics.
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Each group adds up to a number bigger than 1/2. Therefore, if we denote by Hn the partial sum
of the first n terms of the series, we see that

H4 > 1/2 + 1/2 = 1

H8 > H4 + 1/2 > 1 + 1/2 = 3/2

H16 > H8 + 1/2 > 3/2 + 1/2 = 2

. . .

H2k > k · 1/2
. . .

(5.6)

Thus the sequence of partial sums is unbounded, and the harmonic series diverges. We note that as
n grows, the value of the partial sum of n terms grows rather slowly. For example, Euler calculated
that H1000 ≈ 7.48 and H1000000 = 14.39.

Let us consider a more general series of the form

(5.7) 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · · =

∞∑
n=1

1

ns
,

where s is some positive real number. If s = 1, then (5.7) becomes the harmonic series. If s < 1,
then the terms in (5.7) are bigger than the corresponding terms in (5.5), and so are the partial
sums, hence, the series also diverges.

Now consider the case s > 1. We write s = 1 + t, where t is some positive number. We have

(5.8)
1

(n+ 1)s
+

1

(n+ 2)s
+ · · ·+ 1

(2n)s
< n · 1

ns
=

1

nt
.

Splitting the series into groups, analogously to what we did for the harmonic series we have

1

3s
+

1

4s︸ ︷︷ ︸
2

+
1

5s
+

1

6s
+

1

7s
+

1

8s︸ ︷︷ ︸
4

+
1

9s
+ · · ·+ 1

16s︸ ︷︷ ︸
8

+ . . . .

From (5.8) it follows that each group above is less than the corresponding term of the geometric
series {

1

2t
,

1

4t
,

1

8t
, . . .

}
=

{
1

2t
,

1

(2t)2
,

1

(2t)3
, . . .

}
Since this geometric series {( 1

2t )n} converges, we conclude that the sequence of partial sums of the
series in (5.7) is bounded above, and therefore converges by the Monotone Convergence Theorem.
Hence, the series (5.7) also converges. Another proof of convergence of the series for s > 1 will
be given later, when we discuss the Integral Test for Convergence. The sums of this series are
the values of a famous function ζ(s), called the Riemann ζ-function. It plays fundamental role in
Number theory.

Example 5.4. Consider
∞∑
n=2

1

n2 − n
.
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First observe that 1
n2−n = 1

n−1 −
1
n . Therefore, the partial sum An of this series equals

An =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1 +

(
−1

2
+

1

2

)
+ · · ·+

(
− 1

n− 1
+

1

n− 1

)
− 1

n
= 1− 1

n
.

(5.9)

Thus An → 1, and the series converges to 1. Series of this type are called telescoping series. �

5.2. Comparison Theorems. Convergence or divergence of series can be often determined by
comparing a given series to another series, which is known to converge or diverge. In the next
theorems we assume that

∑∞
n an, and

∑∞
n bn are series with positive terms

Theorem 5.2 (Comparison Test). Suppose that there exists a number N > 0 such that the in-
equality an ≤ bn holds for all n > N . Then convergence of

∑
bn implies convergence of

∑
an.

Equivalently, divergence of
∑
an implies that of

∑
bn.

Proof. We may drop any finite number of terms of the series without affecting its convergence.
Therefore, without loss of generality we may assume that that an ≤ bn for all n = 1, 2, . . . . Denote
by An, and Bn the partial sums of

∑
an and

∑
bn respectively. Then An ≤ Bn. Suppose that∑

bn converges. Then the sequence of partial sums {Bn} is bounded above: Bn ≤ L, for some
L > 0. Therefore An ≤ Bn ≤ L, and by the Monotone Convergence Theorem, the sequence {An}
also converges. This proves the theorem. �

Theorem 5.3 (Limit Comparison Test). Suppose there exists a limit

lim
n→∞

an
bn

= K (0 ≤ K ≤ ∞).

Then:
(i) if the series

∑
bn converges and K <∞, then

∑
an converges.

(ii) if
∑
bn diverges and K > 0, then

∑
an also diverges.

Proof. Suppose
∑
bn converges with K < ∞. Given any ε > 0 by definition of the limit, for

sufficiently large n we have
an
bn

< K + ε =⇒ an < (K + ε) · bn

Since the series
∑
cn =

∑
(K + ε)bn obtained by multiplying the series

∑
bn by a constant (K + ε)

converges, we may apply the Comparison Test to
∑
an and

∑
cn to conclude that the series

∑
an

also converges.
The proof of the second statement is Exercise 6.5. �

Theorem 5.4. Suppose there exists N > 0 such that for n > N we have

(5.10)
an+1

an
≤ bn+1

bn
.

Then convergence of
∑
bn implies convergence of

∑
an and divergence of

∑
an implies that of∑

bn.

The proof of this theorem is Exercise 6.7.

Example 5.5. Test for convergence the following series.

(i)
∞∑
n=1

(n!)2

(2n)!
,
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(ii)

∞∑
n=1

1

n n
√
n

,

(iii)
∞∑
n=1

(
1

n
− ln

n+ 1

n

)
.

Solutions:

(i)
n!

(2n)!
=

122232 . . . n2

1 · 2 · ... · n · (n+ 1) · ... · (2n)
=

1

n+ 1
· 2

n+ 2
· ... · n

2n
<

1

2n
. Since

∑ 1
2n converges,

it follows by the Comparison Test (Theorem 5.2) that the series
∑ n!

(2n)! also converges.

(ii) We use the Limit Comparison Theorem: Since

1

n n
√
n
÷ 1

n
=

1
n
√
n
→ 1,

and the harmonic series
∑ 1

n diverges, we conclude that the series
∑ 1

n n√n also diverges.

(iii) We use the inequality ln(1+x) ≤ x, which holds for −1 < x (See Lecture 1, Example. 1.12).
First observer that

ln

(
1 +

1

n

)
<

1

n
=⇒ 0 <

1

n
− ln

(
n+ 1

n

)
.

Furthermore,

− ln
n+ 1

n
= ln

n

n+ 1
= ln

(
1− 1

n+ 1

)
< − 1

n+ 1
.

Therefore,

0 <
1

n
− ln

n+ 1

n
<

1

n
− 1

n+ 1
=

1

n(n+ 1)
<

1

n2

Thus, the series converges by the Comparison Test and convergence of
∑ 1

n2 . �

5.3. Power series. A power series centred at a point a is defined to be an expression of the form

(5.11)

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . . ,

where cj are some numbers. In particular, a power series centred at the origin (i.e., when a = 0)
has the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + . . . .

A power series centred at 0 can be thought of as an ”infinite polynomial”. The values of x for
which the series (5.11) converges form the domain of convergence of the power series. It is clear
from (5.11) that it always contains its centre a, and so on its domain of convergence the power
series defines a function of x.

Example 5.6. Consider the power series centred at the origin given by

∞∑
n=0

xn = 1 + x+ x2 + x3 + . . . .
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This is a geometric series with a = 1, q = x. The series converges for |x| < 1, and diverges for all
other values of x. In fact, the function that this series defines on |x| < 1 is

1

1− x
=

∞∑
n=0

xn.

We will show that the domain of convergence of a power series is always an interval (finite or
infinite), or one point - its centre. For that we first prove the following

Lemma 5.5. If the power series

(5.12)
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + . . . .

converges for some x = b, then it converges for all |x| < |b|.

Proof. Since the power series (5.12) converges for x = b, the sequence {cnbn} is bounded, i.e., there
exists M > 0 such that |cnbn| < M for all n. Therefore, for any x satisfying |x| < |b|, we have

|cnxn| =
∣∣∣∣cnxnbnbn

∣∣∣∣ < M

∣∣∣∣xnbn
∣∣∣∣ = M

∣∣∣x
b

∣∣∣n .
Since |x/b| < 1, the geometric series

∞∑
n=0

M
∣∣∣x
b

∣∣∣n converges, and by the Comparison Test, so does

the series
∞∑
n=0

cnx
n. �

Example 5.7. Consider
∞∑
n=0

n!xn. By the Ratio Test

lim
n→∞

(n+ 1)! xn+1

n! xn
= lim

n→∞
(n+ 1)x =∞

for all values of x. Therefore, the series converges only for x = 0. �

If the domain of convergence is unbounded, then it must equal all of R. Indeed, for all points b
in the domain of convergence, by Lemma 5.5 the series converges for all x which are less than |b|
in absolute value. By taking bigger and bigger b, we see that the series converges for all x ∈ R.

On the other hand, suppose that the series in (5.12) has a point different from the origin where
it converges, and that the domain of convergence is bounded. Consider the least upper bound of
the set of values of x for which the series converges. Recall that the least upper bound exists by
the Axiom of Completeness (see Lecture 4). Denote it by R. We claim that if |x| < R, then the
series converges. Indeed, suppose on the contrary that the series diverges for this x. It follows from
Lemma 5.5 that for |x′| > |x| the series also diverges. So |x| is an upper bound for the domain
of convergence of the series. But this contradicts the fact that R is the least upper bound. This
proves the claim. Similarly, if |x| > R, then the series diverges. Combining everything together
yields the following

Theorem 5.6. For the series
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + . . . .
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one of the following mutually exclusive possibilities holds:
(i) The series converges at the origin only.
(ii) The series converges on the whole real line R.
(iii) There exists R > 0 such that the series converges for |x| < R and diverges for |x| > R.

The number R in (iii) is called the radius of convergence of the series. We will use the convention
that R = 0 in (i), and R = ∞ in (ii). When possibility (iii) holds the power series may converge
at the end points R and −R. Thus, the domain of convergence in this case is one of the following
intervals: (−R,R), [−R,R), (−R,R], or [−R,R]. Because of that, we will also call the domain of
convergence the interval of convergence of the power series.

Corollary 5.7. The power series

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . . .

either converges at one point a, or on the whole of R, or on one of the bounded interval (a−R, a+R),
[a−R, a+R), (−aR, a+R], or [a−R, a+R], where R > 0.

Example 5.8. Find the interval of convergence of the following power series:

(a)
∞∑
n=0

xn

n!

(b)

∞∑
n=1

(x− 5)n

n 2n

Solution: (a) We apply the Ratio Test:

lim
n→∞

xn+1

(n+ 1)!
· n!

xn
= lim

n→∞

x

n+ 1
= 0

for all x. Thus, the interval of convergence of this power series is R.

(b) Again by the Ratio test,

lim
n→∞

|x− 5|n+1

(n+ 1) 2n+1
· n 2n

|x− 5|n
=
|x− 5|

2
.

For the convergence of the series we need to have |x−5|2 < 1, or

|x− 5| < 2.

Thus the radius of convergence equals 2. To determine the interval of convergence we need to
investigate the end points. When x = −3, the series becomes

∞∑
n=1

(3− 5)n

n 2n
=
∞∑
n=1

(−1)n

n
,

which converges by the Alternating Series Test. For the other end point x = 7 we have

∞∑
n=1

(7− 5)n

n 2n
=

∞∑
n=1

1

n
,

which a harmonic series, and so diverges. Thus the interval of convergence of the series is [3, 7). �
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Sometimes it is convenient to find the radius of convergence R of the power series
∑
cn(x− a)n

using the so-called Cauchy-Hadamard formula:

(5.13)
1

R
= lim

n→∞
n
√
|cn|,

provided that the limit exists. (If the limit does not exist, then one can show that 1/R equals the

largest limit of n
√
|cn|, that is the limit as n approaches infinity of the supremum of the elements

of the sequence after the n-th position.)

Example 5.9. To find the interval of convergence of the series
∞∑
n=1

3nxn

we use formula (5.13):

lim
n→∞

n
√
|3n| = 3,

and so R = 1/3. A simple calculation shows that the series diverges at both end points, x = 1/3
and x = −1/3. Thus the interval of convergence is (−1/3, 1/3). �

One can show that on the (open) interval of convergence, the power series (5.11) is continuous
and differentiable. The proof of these facts, however, goes beyond our capabilities at this point.
Furthermore, the convergent power series can be differentiated and integrated term-by-term. This
will produce the functions which are respectively the derivative and the anti-derivative of the
function defined by the original series. More precisely, the following holds.

Theorem 5.8. Suppose the power series
∑

n cn(x− a)n has the radius of convergence R > 0, and
on the interval (a−R, a+R) it defines the function f(x):

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n.

Then

(5.14) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1,

and

(5.15)

∫
f(x)dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · · = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
.

Furthermore, the radius of convergence is the same for all three power series above.

The theorem can be proved by applying the Root Test to the series in (5.14) and (5.15), and
using the fact that n

√
n → 1 as n → ∞. It should be noted that in the theorem above, while the

radius of convergence is the same, the interval of convergence can be different for f(x), f ′(x) and∫
f(x)dx.

Example 5.10. Find the interval of convergence of the power series
∞∑
n=1

nxn,

and compute the function that it represents.
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Solution: we consider the series

∞∑
n=1

xn. For every fixed x with |x| < 1, this is a geometric series

converging to
x

1− x
:

∞∑
n=1

xn = x+ x2 + x3 + · · · = x

1− x

Differentiating this series term-by-term gives

∞∑
n=1

nxn−1 =
1

(1− x)2
.

Therefore, we conclude that
∞∑
n=1

nxn =
x

(1− x)2
.

By Theorem 5.8 this series has the radius of convergence 1. By inspection, the series diverges at
both end points x = 1 and x = −1. Thus the interval of convergence of the series is (−1, 1). �

Example 5.11. Find the power series representation for the functions f(x) =
1

2 + x
centred at

(a) the origin, (b) a = 1.
(a) We have

1

2 + x
=

1

2
· 1

1− (−x/2)
=

1

2

∞∑
n=0

(
−x

2

)n
=

∞∑
n=0

(−1)n
xn

2n+1
=

1

2
− x

4
+
x2

8
− x3

16
+ . . . .

Using the ratio test one can see that the interval of convergence of this power series is (−2, 2).

(b) The power series representation centred at a = 1 will have the powers of (x− 1). Therefore,
we should try to use the geometric series that will have the powers of (x− 1). We have

1

2 + x
=

1

3 + (x− 1)
=

1

3
· 1

1− (−x−1
3 )

=
1

3

∞∑
n=0

(
−x− 1

3

)n

=

∞∑
n=0

(−1)n
(x− 1)n

3n+1
.

Again, using the Ratio Test, we see that the radius of convergence is 3, and the interval of conver-
gence is (−2, 4) Note that although the power series in (a) and (b) are different, and have different
intervals of convergence, the point x = −2 is the end point for both of them. This is because the
function f(x) is not defined at this point. �

Example 5.12. To find the power series representation of the function ln(1 + x2) centred at the
origin, first consider the function ln(1 + x). Its derivative equals 1

1+x with

1

1 + x
=

1

1− (−x)
= 1− x+ x2 − x3 + x4 − · · · =

∞∑
n=0

(−1)nxn.

Integrating the above expression term-by-term we obtain

ln(1 + x) =

∫
dx

1 + x
= x− x2

2
+
x3

3
− · · ·+ C =

∞∑
n=1

(−1)n+1x
n

n
+ C.
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To determine the value of C, we set x = 0 which yields 0 = ln(1 + 0) = C. Therefore,

(5.16) ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
.

Finally, by replacing x with x2 in the above formula, we obtain:

ln(1 + x2) =
∞∑
n=1

(−1)n+1 (x2)n

n
= x2 − x4

2
+
x6

3
− x8

4
+ . . . .

�

Example 5.13. Prove that

ln 2 =
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . . .

Solution: Substitute x = 1 into formula (5.16) to get the result.

Note: This seemingly simple solution, however, requires a justification: why is the power series
continuous (from one side) at the end point of the interval of convergence, provided that the series
converges at that point? This is the content of the so called Abel’s theorem, the proof of which
can be found in advanced calculus textbooks. �

5.4. Taylor Series. Let f(x) be a function that has derivatives of all orders on the interval (a−
R, a+R) for some a ∈ R, and R > 0. Suppose that f(x) can be represented on (a−R, a+R) by
a convergent power series

(5.17)
∞∑
n=0

cn(x− a)n.

This means that for any x ∈ (a − R, a + R), the series (5.17) converges to f(x). Then by direct

differentiation of the power series (5.17), we see that f (n)(a) = n! cn, for all n > 0 (here f (n) denotes
the derivative of f(x) of order n). From this we conclude that

cn =
f (n)(a)

n!
,

and thus the series in (5.17) becomes

(5.18)
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + . . .

This is called the Taylor series centred at x = a associated with f(x). If a = 0, then (5.18) becomes

(5.19)

∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + . . . ,

which is called the Maclaurin series associated with f(x).

Example 5.14. Let P (x) be a polynomial of degree N ,

P (x) = c0 + c1x+ c2x
2 + · · ·+ cNx

N .

By inspection, cn =
P (n)(0)

n!
for n = 1, . . . N , and cn = 0 for n > N . Thus, the Maclaurin series

associated with P (x) is exactly P (x). �
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In general, however, one cannot immediately conclude that the Taylor or Maclaurin series asso-
ciated with a function f(x) converges to f(x). In fact, it is not even clear whether the Taylor series
of a given function converges at all. (Note that when we derived (5.18) we assumed to begin with
that f(x) has a power series representation.) Define the Taylor polynomial to be

(5.20) TN (x) =

N∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) + · · ·+ f (N)(a)

N !
(x− a)N ,

i.e., T (x) is simply the order N partial sum of the Taylor series (5.18). Thus, by the definition of
convergence, in order to show convergence of the Taylor series to f(x) we need to show that

(5.21) lim
N→∞

TN (x) = f(x)

for all x on some interval. If we define the remainder of the Taylor series to be

(5.22) RN (x) = f(x)− TN (x)

then proving (5.21) is equivalent to showing

RN (x)→ 0, as N →∞.

The following theorem provides a useful tool for proving convergence of Taylor series. For

simplicity, we consider the case when a = 0. Then TN (x) = f(0) + f ′(0)x+ . . . f
(N)(0)
N ! xN , and

(5.23) RN (x) = f(x)−

(
f(0) + f ′(0)x+ . . .

f (N)(0)

N !
xN

)
Theorem 5.9 (Lagrange’s Remainder Theorem). Let f be infinitely differentiable on (−R,R).
Then there exists a number c satisfying |c| < |x| such that

(5.24) RN (x) =
f (N+1)(c)

(N + 1)!
xN+1.

Example 5.15. Let f(x) = ex. Then f (n)(0) = e0 = 1 for all n. Therefore, cn = 1
n! , and we have

ex ∼
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . .

The remainder of order N of this Maclaurin series is

RN = ex −
(

xN+1

(N + 1)!
+

xN+2

(N + 2)!
+ . . .

)
.

According to Lagrange’s Remainder Theorem, there is a number c, |c| < |x|, such that

RN (x) =
f (N+1)(c)

(N + 1)!
xN+1 =

ec

(N + 1)!
xN+1.

For any fixed x, RN (x)→ 0, since for any x, xn

n! → 0 as n→∞. Thus

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . .

for all x ∈ R. �
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Example 5.16. Let

(5.25) g(x) =

{
e−1/x

2
, if x > 0

0, if x ≤ 0

Since e−1/x
2

approaches 0 as x → 0, the function g(x) is continuous at 0. In fact, one can show

that g(x) has continuous derivatives of any order at x = 0, and g(n)(0) = 0 for any n > 0. Indeed,
to show that g′(0) = 0 first observe that

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0+

e−1/h
2

h
.

(Note that g(h) = 0 for h < 0, so we may assume that h > 0.) Consider first

lim
h→0+

e−1/h

h
= lim

h→0+

1/h

e1/h
= lim

h→0+

−1/h2

e1/h(−1/h2)
= lim

h→0+

1

e1/h
= 0.

Here we used L’Hôpital’s Rule. Next, observer that

0 < e−1/h
2
< e−1/h,

and thus by the Squeeze theorem we have limh→0+
e−1/h2

h = 0, which proves that g′(0) = 0.
Analogous proof will work for arbitrary n.

The Maclaurin series associated to g(x) is, therefore, identically zero. It follows that the Maclau-
rin series associated with g(x) does not converge to g(x) for x > 0. �

Definition 5.10. An infinitely differentiable function f(x) is called real-analytic in a neighbourhood
of a point x = a, if for some positive R the Taylor series (5.18) associated with f(x) converges to
f(x) on (a−R, a+R).

Thus, ex is a real-analytic function, while the function g(x) in Example 5.16 is not real analytic
near x = 0.

Proof of Lagrange’s Remainder Theorem. . First note the following version of the Mean Value
Theorem: If g(x) and h(x) are continuous on a closed interval [a, b] and differentiable on the open
interval (a, b) and h′(x) 6= 0, then there exists a point c ∈ (a, b) such that

(5.26)
g(b)− g(a)

h(b)− h(a)
=
g′(c)

h′(c)

This can be proved by applying the Mean Value Theorem to the function

φ(x) = (g(b)− g(a))h(x)− (h(b)− h(a))g(x).

Note that the n-th order derivative of RN (x) at x = 0 vanishes for n = 0, 1, 2, . . . , N (see Exercise
6.9). Therefore, if we apply (5.26) to functions g(x) = RN (x) and h(x) = xN+1, then (assume x > 0
for simplicity) there exists a point c1 ∈ (0, x) such that

RN (x)

xN+1
=

R′N (c1)

(N + 1)cN1
.

We now repeat the process and apply (5.26) to functions g(x) = R′N (x) and h(x) = xN on the
interval (0, c1): there is c2 ∈ (0, c1) such that

R′N (c1)

cN1
=
R′′N (c2)

NcN−12

.
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Continue the process inductively N times. In the end we get

RN (x) =
xN+1

(N + 1)!

R
(N+1)
N (cN+1)

cN−NN+1

,

where cN+1 ∈ (0, cN ) ⊂ · · · ⊂ (0, x). Now set c = cN+1, then cN−N = 1, and we can write

RN (x) =
R

(N+1)
N (c)

(N + 1)!
xN+1 =

f (N+1)(c)

(N + 1)!
xN+1,

where the last equality follows from the fact that R
(N+1)
N (x) = (f(x) − TN (x))(N+1) = f (N+1)(x),

because T
(N+1)
N ≡ 0. This proves the theorem. �

Example 5.17. Let f(x) = (1 + x)1/2. Then

f (n)(0) =
1

2

(
1

2
− 1

)(
1

2
− 2

)
. . .

(
1

2
− n+ 1

)
.

Therefore,

cn =

(
1/2

n

)
=

1
2

(
1
2 − 1

) (
1
2 − 2

)
. . .
(
1
2 − n+ 1

)
n!

,

and hence

(1 + x)1/2 ∼
∞∑
n=0

(
1/2

n

)
xn

is the associated Maclaurin series. This is called the binomial series. Let us try use Lagrange’s
Remainder Theorem again to determine convergence of the series above. We have

RN (x) =
1
2

(
1
2 − 1

) (
1
2 − 2

)
. . .
(
1
2 −N

)
(1 + c)1/2−N

(N + 1)!
xN+1

for some c, |c| < |x|. If |x| < 1, then clearly xN+1 → 0 as N → ∞. Also, limN→∞
(1/2
N

)
= 0 (see

Exercise 6.13). If c > 0, then we also have (1 + c)1/2−N → 0 as N → ∞. However, if c < 0, then

(1 + c)1/2−N does not go to zero, and we cannot be sure that RN (x) goes to zero.
In general, the binomial series converges for x ∈ (−1, 1), and we have

(1 + x)k =
∞∑
n=0

(
k

n

)
xn, k ∈ R, and |x| < 1,

where the binomial coefficients are defined by(
k

n

)
=
k(k − 1)(k − 2) · · · (k − n+ 1)

n!
.

�

Exercises

5·1 Use the technique of Example 5.2 to find the values of q for which the series
∞∑
n=1

nqn

converges.
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5·2 Prove that if the series
∑
an converges then its remainder Rm as defined in (5.4) converges to

zero.

5·3 Determine whether the series

∞∑
n=1

1

1 + sn
converges or diverges for s > 1.

5·4 Find the sum of the series if it is converging:

∞∑
n=1

1

n(n+ 3)
.

5·5 Prove part (ii) of Theorem 5.3.

5·6 Test for convergence the following series:

(a)

∞∑
n=1

1√
n(n+ 2)

,

(b)
∞∑
n=1

n!

nn
,

(c)
∞∑
n=1

1

(lnn)p
, p > 0,

(d)

∞∑
n=1

1

(lnn)lnn
.

5·7 Prove Theorem 5.4. Hint: multiply equations (5.10) term by term, and use Theorem (5.2).

5·8 Formulate Lemma 5.5 for the power series given by equation (5.11).

5·9 Prove that in the proof of Lagrange’s theorem the remainder RN (x) given by equation (5.23)

satisfies R
(n)
N (0) = 0 for all n = 0, 1, . . . , N .

5·10 Formulate Theorem 5.6 for the power series given by equation (5.11).

5·11 Show that the function g(x) in Example 5.16 satisfies g′(0) = 0.

5·12 Use Lagrange’s Remainder Theorem to prove that the Maclaurin series of cosx converges to
cosx for all x.

5·13 Show that for any m,

lim
n→∞

(
m

n

)
= 0.


