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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

10. STRUCTURE THEOREMS AND CONVOLUTION OF DISTRIBUTIONS
10.1. Structure theorems. We introduce the following property ().

Definition 10.1. A linear functional f : D(2) — R satisfies condition (x) if for every compact
subset K in Q there exists C = C(K) > 0 and a positive integer k = k(K) such that

(1) [(f, 0] < Clldllenxys Yo € D(Q), suppo C K.
We have the following characterization of distributions.

Theorem 10.2. A linear functional f on the space D(Q) is a distribution if and only if it satisfies
condition (*).

Proof. 1If f satisfies () then f is clearly continuous, and so f € D'(Q2). To prove the converse,
assume that f € D'(Q). Arguing by contradiction, suppose that f does not satisfy (x). Then there
exists a compact K in € such that for every C' and k the inequality (1) fails for some ¢ € D(€2) with
supp ¢ C K. In particular, we can set C' = k = j and take a function ¢; € D(2) with supp¢ C K
such that

By linearity of expressions on both sides, this inequality still holds if we replace ¢; by the function

¢,
1/}]' = 7<f7¢J>j>' Then

1/-] >|| 7/’] ||Cj(K)’ J=0,1,2,....
Fix a positive integer k. Then for j > k we have

15 llen oy <Nl W5 lleirey< i~ =0, as j — oo.

Therefore, the sequence (v;) converges to 0 in D(€) but (f,;) = 1. This contradiction proves the
theorem. O

Let © be a domain in R", f € D'(2) and k > 0 be an integer. We say that a distribution f
has the order of singularity < k if there exists a constant C' = C(£2, f) > 0 such that for every
¢ € D(2) we have

(ool <C e ller@) -

Thus, f satisfies condition (1) with the same k for every compact K in (, i.e., k can be chosen
independently of K. We say that the order of singularity of f is equal to k if this estimate does
not hold for some k' < k.

Example 10.1. If T} is a regular distribution defined by a function f € LY(2). Then its order of
singularity is 0. ©

Example 10.2. The order of singularity of §*)(z) is equal to k. ©

The following property of distributions is often used.
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Theorem 10.3. Let Q' be a domain in R™ and Q2 be a bounded subdomain such that Q C €. Then
for every distribution f € D'(Q) its restriction to Q is a distribution of finite order of singularity.

Thus, the theorem claims that there exist an integer & > 0 (depending on f and 2) and a
constant C' = C(2, f) > 0 such that for every ¢ € D(Q2) we have

(Fro)l <Cliellese

The proof is similar to the previous one.
Proof. Arguing by contradiction, suppose that there exists a sequence ¢, € D(2) such that

[(fsom)| > m | om [lom @

for every m = 1,2, .... Set ¥, = amPm, where ay, is a real number. Then by linearity we still have

[(fs ¥m) | > m | Y lom ) -
Let am = (|| om ||Cm(Q))_1/m. Then

(3) [(fs om)| > m || Y lom@y= 1.
On the other hand, || ¥, [|cm ()= 1/m for every m. Then for every 3, such that |3| < m, we have

| D5, [l ooy < 1/m.

Thus, the sequence (1,,) converges to 0 together with all partial derivatives of all orders and the
supports of ¢™ are contained in the compact  in . Then ™ — 0 in D(Q') and (f, P,) — 0.
This contradicts (3). O

The following is a consequence of Theorem 10.3.

Proposition 10.4. Let f € D'(R") satisfy supp f = {0}. Then there exist an integer k > 0 and
constants C,, such that

f=)> CaD%(x).

|| <k

Proof. Let a function n € D(R™) be equal to 1 in a neighbourhood of 0 and vanishes outside
B(0,1) = {]z| < 1}. Consider a function ¢ € D(R"™). Let ©Q be a domain in R™ containing
supp ¢ U B(0,2). Applying Theorem 10.3 to f in © we conclude that there exist an integer k > 0
(depending on €2) and a constant C' = C(2, f) > 0 such that for every ¢ € D(Q2) we have

(4) (o) <C & llew) -
Set h(z) = (x) — Yo <k (D6(0)2*) /ol and

¥s(x) = h(z)n(sz).
Then for every integer s > 1 we have

(5) <f(95)7?/)1> = <f’ %)

Indeed, (f,11) — (f,v¥s) = (f, (Y1 — ¥s)h) = 0 since (Y1 — ¥s)h = 0 in a neighborhood of 0 and
supp f = {0}. Since supp s C Q for every s > 1, we obtain that s € D(Q2) and by (4),

[(F )| < C 1l s llory, s> 1.
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It follows easily from the definition of ¥ that || s [|cr@)—> 0 as s — co. But then (5) implies
that (f(z),41) = 0. Therefore,

(from) = D ((F,2%n) [a))D(0) = Y Ca(D6(x), ),

|| <K lo| <k
where Cy = ((f,z%n)/a!) are independent of ¢. O

Example 10.3. Let a function f € L} (R™\ {0}) satisfy the following condition: there exists a

loc

constant C' > 0 and an integer m > 0 such that
C
(6) |f(z)| < W’ Ve e {zx e R": |z| < 1}

We will show that f admits an extension past the origin as a distribution, i.e., there exists f €
D'(R™) such that

(fro)=[ flx)p(x)de
an

for every ¢ € D(R™).

First of all let us recall the general Taylor formula: let a € R™ and let ¢ be a smooth function
€ C* in a neighbourhood of a. Then for every integer k£ > 0 there exists a neighbourhood U of a
such that for x € U we have

1
ve) = Y @@=+ [(-0f Y EEEDe+ (- e o)

0<|al<k |o|=k+1

As usual we use here the notation a! = aj!..a,,! and z® = 2$1...22". We define the distribution f
by the formula

(f, o) =N+ I,

where

1
PRI CEE SR P

jal<m—1

Using the Taylor formula and condition (6) we obtain

LI <C ) sup | D]

laf=m

Using the condition supp¢ C {z : [x| < M} we also obtain

rms/ |F(@)p(@)|dz < C'sup o]
1<[z|<M R™

From this and Theorem 10.2 we conclude that f is a well-defined distribution in D’(R™). o

Finally, consider an example of a distribution of infinite order.
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Example 10.4. Consider a linear functional on D(R) defined by
(fr0) =9 (n).
n=0

It follows by Theorem 8.5 that f € D'(R). We leave to the reader to prove that f is not of a finite
order, arguing by contradiction. ¢

10.2. Regularization and convolution with test-functions. Recall that a convolution f * g
of two functions L?(R") is defined by

(7) frg(x) = A f)g(z —y)dy = A fx—y)g(y)dy.
This makes natural the following general definition.

Definition 10.5. A convolution of a distribution f € D'(R™) and a test function ¢ € D(R™) is
defined by

(8) o) = (f(y), plx —y)).

Note the following: for every x € R™ the function y — ¢(x — y) is a test-function; on the right-
hand side of (8) we apply distribution f to this function which is stressed by the notation f(y).
Thus, f * ¢ is defined as a usual function on R".

Proposition 10.6. We have f x ¢ € C°(R"™) and
(9) D*(f*¢)=fxD% = (Df) = ¢.

Proof. The regularity of f * ¢ and the first equality of (9) follow from Theorem 8.7. Let us prove
the second equality in (9). We have

0 0 0
((axjﬁ " so) (@) = (G- W)l = ) = ~{F0). (el =)
— (). (aaso) (e —y) = fx 63@
The rest of the proof is done by induction. O

A very important special case arises if we take the bump function w. as ¢ in the definition of
convolution. This leads to

Definition 10.7. The convolution f. := f *w. is called the regularization of a distribution f.

Proposition 10.8. We have
(i) fe € C=(R").
(ii) (D*f)e = D*(fe) -
(iii) If f € C(R™) then fo — f,e — 0+ in C(Q) for every bounded subset 2 of R™.
(iv) If ¢ € D(R™) then ¢ € D(R™) and . — ¢ in D(R"™) as ¢ — 0+.
(v) if f € D'(R™) then f — [ in D'(R™) as e — 0+.

)
Proof. Parts (i) and (ii) follow from Proposition 10.6. Part (iii) is established in Proposition 7.6,
so it remains to show (iv) and (v). If ¢ € D(R™), then its support is compact, say, ¢(z) = 0 when
|x| > A for some A > 0. Then the formula for the regularization of functions shows that ¢(z) =0
for |z| > A+esosuppp. C K ={z € R": || < A+ 1} for ¢ < 1. It follows now from (iii) and

— — — —
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(ii) that ¢, converges to ¢ as ¢ — 0+ uniformly on K together with all partial derivatives of any
order. Hence . — ¢,e — 0+ in D(R") and we obtain (iv).
To prove (v), we view f. = (f(y),w:(x — y)) as a distribution acting on every ¥ € D(R") by

Fert) = [ (@)l — ),

It follows from Theorem 8.7 that
10 [ G- )elade = (). [ oo - i) = (f0)

To see this we consider for simplicity of notation the case n = 1. Let
t
FO = [ (e — )o@,
—0o0

and

G(t) = (f(v), / we(z — y)(e)da).

Then by Theorem 8.7, F'(z) = G'(z) = (f(y),ws(x — y))1(x). Since F(—o0) = G(—o0) = 0, we
have F' = G for all ¢t and we pass to the limit as ¢t — +oo. This proves (10). Then by (iv),
<f€7w> = <f7w6> — <f7w> as ¢ — 0+.
This concludes the proof. O
As an application we give another proof of Corollary 9.4: if f € D'(R") are such that % f=0
in D'(R™) for j =1,...,n, then f = const.

Proof of Corollary 9.4. For every € > 0 we have 0 = (%f) = ai(fg) Since f: is a usual function
of class C*°, we conclude that f. = C(e). Then,

(fyo) = lim (f.,) = lim C’(a)/gp(x)dx for any ¢ € D(R").

e—0+ e—0+
In particular, set ¢ = w(z) so that [w(z)dz = 1. We obtain that C' = lim._,o1 C(e) exists, and
f=cC. O

10.3. Convolution of distributions. Let f and g be functions in L?(R"). For a moment assume
that f* g isin L} (R™). Then it defines a regular distribution acting on ¢ € D(R™) by

(#rat@plod = [ fra@e@de= [ [ 1wt - niy) ety

By Fubini’s theorem,

/(/ f(y)g(a:—y)dy> o(r)dr = /f(y) </g($—y)go(a:)dx> dy
/f < (Hydt)dy_/fy Lot +y))dy

), (g9(t), o(t +y)))-
Thus,

(11) (f *g(x), o(@)) = (f(y), (9(t), e(t + 1)), ¥ € DR").
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Therefore, in the general case of arbitrary distributions f, g € D'(R™) it is natural to take equality
(11) as a definition of the convolution f * g. However, the right-hand side of equality (11) is not
defined for arbitrary distributions f and g since the function y — (g(t), p(t + y)) is just of class
C>(R™) and in general need not have compact support. The support is clearly compact if the
distribution g itself has compact support. So in this case the convolution is well-defined. Similarly,
if f has compact support then it acts on any function from C°°(R"™) as previously discussed, so the
right-hand of equality (11) is also well-defined. We summarize this in the following.

Proposition 10.9. The convolution f x g of two distributions f,g € D'(R™) is a distribution
correctly defined by the equality (11) if at least one of the distributions f and g has compact support.

Example 10.5. For any distribution f € D'(R") we have

(fx0,0) = {f(y), (1), e(t + 1)) = (f(y), e(¥)),
that is f * 0 = f. Furthermore

(0 f,0) = (6(y), (f(£), 0t +u))) = (f(t), (1)),
so that § * f = f. We obtain the following fundamental identity
fx0=0xf=f
for any f € D'(R"). o
We conclude this section by some algebraic properties of convolution.

(1) The map (f,g) — f * g is bilinear. This is obvious.
(2) We have

(12) D*(fxg)=fxD% =D"fxg.

For the proof we consider ¢ € D(R™). Then

(D*(f % 9),0) = (=DIU(f * g, D*0) = (f(y), (9(t), (=D (D*@)(t + 1))
= (f(y), (D% (1), o(t +y))) = (f * D, ©),
which proves the first equality of (12). For the second, we observe that (D%g(t), o(t + y)) =
(D%g) * p(—y); hence it follows from (9) that
(Dg(t), p(t+y)) = (=1)*1D(g(t), (¢ + v))-
Therefore,
(F@), (Dg(t), 0t + 1)) = (=D (f(y), D*{g(t), (¢ +y)))
= (Df(y),{g(t), p(t +y))) = D*f * g.
A simpler proof can be given using Theorem 8.7:
(=D f (). (g(0), (D) + 1)) = (=1)*N(f (), D*(g(t), (¢ +9)))
= (D*f(y), (g(t), o(t +y)))-



