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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

11. Fundamental solutions of differential operators

11.1. Fundamental solutions. In this section we study linear differential equations of the form

∑
|α|≤m

aαD
αu = f(x), f ∈ D′(Rn),(1)

with constant coefficients aα ∈ Rn. Define an order m linear differential operator

P (D) =
∑
|α|≤m

aαD
α, aα ∈ Rn.

Then the partial differential equation (1) takes the form

P (D)u = f(x), f ∈ D′(Rn).(2)

Let Ω be a domain in Rn. We say that u ∈ D′(Rn) is a generalized solution of (2) in Ω if u
satisfies this equation in Ω, that is, ∑

|α|≤m

aα〈Dαu, ϕ〉 = 〈f(x), ϕ〉

for every ϕ ∈ D′(Ω).
Suppose that f ∈ C(Ω). If a function u ∈ Cm(Ω) satisfies (2), we call it a classical solution of

(2). Obviously, if u ∈ Cm(Ω) is a generalized solution of (2), then it is a classical solution.

Definition 11.1. A distribution E ∈ D′(Rn) is called a fundamental solution of a differential
operator P (D) if

P (D)E = δ(x).

If u is a solution of the homogeneous equation P (D)u = 0 then E + u also is a fundamental
solution of (2), so in general a fundamental solution is not unique. The importance of this notion
stems from the following statement.

Theorem 11.2. Let f ∈ D′(Rn) be a distribution such that the convolution

u = E ∗ f
exists in D′(Rn). Then u is a solution of equation (2). Moreover, this solution of (2) is unique in
the class of distributions in D′(Rn) admitting the convolution with E.

Proof. Using the properties of convolution we obtain

P (D)(E ∗ f) =
∑
|α|≤m

aαD
α(E ∗ f) =

 ∑
|α|≤m

aαD
αE

 ∗ f
= (P (D)E) ∗ f = δ ∗ f = f.
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Thus u = E∗f defines a solution of (2). In order to prove the uniqueness in the class of distributions,
admitting the convolution with E, it suffices to prove that the homogeneous equation

P (D)v = 0

has a unique solution in this class. But this holds since

v = δ ∗ v = (P (D)E) ∗ v = E ∗ (P (D)v) = E ∗ 0 = 0.

This proves the theorem. �

Example 11.1. Let P (D) = d2

dx2
on R. To solve the equation

(3) P (D)u = χ[0,1]

we first find a fundamental solution of the operator P (D). If E satisfies d2E
dx2

= δ, then by Exam-

ple 9.1, we have dE
dx = θ+ c1. For convenience we may take c1 = −1/2. Then E = 1/2|x|+ c2. Take

c2 = 0, then E = 1/2|x| is a fundamental solution. The find a generalized solution of (3) we com-
pute, according to Theorem 11.2, the convolution of the fundamental solution and the right-hand
side of (3). Since one of the functions has compact support, the convolution is well-defined, so we
have

E ∗ χ[0,1](x) =

∫
R

1

2
|y|χ[0,1](x− y)dy =

1

2

∫
R
|x− t|χ[0,1](t)dt =

1

2

∫ 1

0
|x− t|dt.

This integral is a well defined C1-smooth function on R given by

u(x) =


−x2

2 + 1
4 , if x ≤ 0,

x2

2 −
x
2 + 1

4 , if 0 < x < 1,
x2

2 −
1
4 , if x ≥ 1.

�

In the next section we compute fundamental solutions of the classical linear operators in Rn.

11.2. Malgrange-Ehrenpreis theorem. The following fundamental result is obtained indepen-
dently by B. Malgrange and L. Ehrenpreis in 1954-55.

Theorem 11.3. A linear differential operator with constant coefficients admits a fundamental
solution in D′(Rn).

We will follow the proof given by J.-P. Rosay ( Amer. Math. Monthly, 98 (1991), no. 6, p.
518–523.). In what follows it will be convenient to assume that all functions are complex valued.
We denote by || · || the L2-norm on Rn, and

〈φ, ψ〉 =

∫
Rn

φψ

be the corresponding scalar product. If P (D) is a linear differential operator with constant coeffi-
cients of order m, then its adjoint operator P ∗(D) is defined by the identity

〈Aφ,ψ〉 = 〈φ,A∗ψ〉 for all φ, ψ ∈ L2(Rn).

In particular, if

(4) P (D) =
∑
|α|≤m

aα
∂|α|

∂xα
, α = (α1, . . . , αn),
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then the adjoint operator takes the form

P ∗(D) =
∑
|α|≤m

(−1)|α|aα
∂|α|

∂xα
.

Proposition 11.4 (Hörmander’s inequality). Let P (D) be a nonzero linear differential operator
with constant coefficients of order m given by (4). Then for every bounded domain Ω ⊂ Rn, there
exists a constant C > 0, such that for every φ ∈ D(Ω), we have

||P (D)φ|| ≥ C||φ||.
One can take C = |P |mKm,Ω, where

|P |m = max
|α|=m

{|aα|},

and Km,Ω depends only on m and the quantity {sup |x| : x ∈ Ω}.

Proof. To illustrate the idea of the proof first consider the case n = 1, Ω = (0, 1), and P (D) = d/dx.
We need to show that there exists some C > 0 such that ||φ′|| ≥ C||φ|| for all φ ∈ D((0, 1)). We
have

〈(xφ)′, φ〉 = 〈xφ′, φ〉+ 〈φ, φ〉.
Using integration by parts, 〈(xφ)′, φ〉 = −〈xφ, φ′〉, and so 〈φ, φ〉 = −〈xφ′, φ〉 − 〈xφ, φ′〉. Since
|x| < 1, we get ||φ||2 ≤ 2||φ′|| ||φ||, by the Hölder inequality (Thm 4.2). Hence, ||φ′|| ≥ 1/2||φ||.

The general case is proved by induction on the degree of P . Define a linear differential operator
with constant coefficients Pj(D) by the following identity

P (D)(xjφ) = xjP (D)φ+ Pj(D)φ.

The operator Pj(D) is zero iff P (D) does not involve any differentiation with respect to xj . If it is
nonzero, then Pj(D) is of order at most m − 1. Let A = supx∈Ω |x|. By induction on m, we will
show that for every φ ∈ D(Ω),

(5) ||Pj(D)φ|| ≤ 2mA ||P (D)φ||.
Observe that (5) and the definition of Pj yield

(6) ||P (D)(xjφ)|| ≤ (2m+ 1)A ||P (D)φ||.
Since differential operators with constant coefficients commute, we have for all φ ∈ D(Ω),

||P (D)φ||2 = 〈P (D)φ, P (D)φ〉 = 〈φ, P ∗(D)P (D)φ〉 = 〈φ, P (D)P ∗(D)φ〉
= 〈P ∗(D)φ, P ∗(D)φ〉 = ||P ∗(D)φ||2.

The inequality (5) is trivial for m = 0, since then Pj(D) = 0. Assuming that (5) is verified
for operators of order m − 1, we compute 〈P (D)(xjφ), Pj(D)φ〉 in two different ways. From the
definition of Pj(D) we have,

〈P (D)(xjφ), Pj(D)φ〉 = 〈xjP (D)φ, Pj(D)φ〉+ ||Pj(D)φ||2.
By integration by parts (i.e., using the definition of the adjoint) and using commutativity of P ∗(D)
and Pj(D), we obtain

〈P (D)(xjφ), Pj(D)φ〉 = 〈P ∗j (D)(xjφ), P ∗(D)φ〉.
Therefore,

(7) ||Pj(D)φ||2 = 〈P ∗j (D)(xjφ), P ∗(D)φ〉 − 〈xjP (D)φ, Pj(D)φ〉.
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By the induction hypothesis, equation (6) holds for all operators of order m−1, which when applied
to P ∗j (D) yields

||P ∗j (D)(xjφ)|| ≤ (2m− 1)A ||Pj(D)φ||.
And, since

|〈xjP (D)φ, Pj(D)φ〉| ≤ A||P (D)φ|| ||Pj(D)φ||,
we obtain from (7) that

||Pj(D)φ||2 ≤ 2mA ||Pj(D)φ|| ||P (D)φ||,
which proves (5). If P (D) is an operator of order m ≥ 1, there exists j ∈ {1, . . . , n} such that
Pj(D) is of order m− 1, and |Pj |m−1 ≥ |P |m. Thus the proposition follows from (5) by induction
on m. �

Corollary 11.5. If Ω is a bounded domain in Rn, then for every g ∈ L2(Ω) there exists u ∈ L2(Ω)
such that P (D)u = g.

Proof. This follows from the inequality ||P ∗(D)φ|| ≥ C||φ||, φ ∈ D(Ω). Indeed, P (D)u = g means
that for all φ ∈ D(Ω),

(8) 〈g, φ〉 = 〈u, P ∗(D)φ〉.
Let

E = {ψ ∈ D(Ω), ψ = P ∗(D)φ for some φ ∈ D(Ω)}.
Consider the (anti)linear functional l : E → C given by

l(ψ) = 〈g, φ〉, where ψ = P ∗(D)φ.

Then using Hörmander’s inequality we have

||l|| = sup
||ψ||=1

|〈g, φ〉| ≤ ||g|| sup
||ψ||=1

||φ|| ≤ ||g||
C

sup
||ψ||=1

||P ∗(D)φ|| = ||g||
C

.

This shows that l is a bounded linear functional on E with L2-norm. Therefore, l can be extended
to E, the closure of E in L2(Ω). Then the Riesz representation theorem (Theorem 4.11) gives the
existence of u ∈ E such that l(ψ) =< u,ψ >. This implies equation (8). �

We now wish to extend the above result to L2
loc(Ω) functions. For this we first prove the following

Proposition 11.6. There exists C ′ > 0 such that for all η ∈ R and φ ∈ D(Ω), we have∫
Ω
eηx1 |P (D)φ|2 ≥ C ′

∫
Ω
eηx1 |φ|2.

Note that C ′ is independent of η.

Proof. Apply Hörmander’s inequality to Ψ = e(η/2)x1 φ and operator Q(D) defined by

Q(D)(Ψ) = e(η/2)x1P (D)[e−(η/2)x1 Ψ],

which is indeed a constant coefficient operator of the same degree m as P (D). �

Corollary 11.7. Let φ ∈ D(Rn) or more generally φ ∈ L2(Rn) with compact support. If P (D)φ is
supported in the ball B(0, r), then so is φ.

Proof. By letting η → +∞ in Proposition 11.6, one can immediately verify that if P (D)φ = 0
in the half-space {x1 > 0}, then φ = 0 there. From this, using translations and rotations, the
corollary can be verified in the case of a smooth φ. In the nonsmooth case, for ε < 1 consider the
regularization φε = φ ∗ ωe ∈ D(Rn). Then P (D)φε = P (D)φ ∗ ωε is supported in B(0, r + ε) and
φε → φ in L2 as ε→ 0 by Proposition 10.8. This reduces the problem to the smooth case. �
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Proposition 11.8. Let 0 < r < r′ < R. If v ∈ L2(B(0, r′)) and satisfy P (D)v = 0 on B(0, r′),
then there exists a sequence (vj) ⊂ L2(B(0, R)) such that P (D)vj = 0 on B(0, R) and vj → v in
L2(B(0, r)) as j →∞.

Proof. After regularization we can assume that v is smooth, possibly shrinking r′ slightly. It suffices
to show that any continuous linear functional that vanishes on the space L2(B(0, R))∩{α : P (D)α =
0} also vanishes at v. In other words (using the Riesz representation theorem), we have to show
that if g ∈ L2(B(0, r)) and satisfies 〈α, g〉B(0,r) = 0 for all α ∈ L2(B(0, R)) with P (D)α = 0, then
〈v, g〉B(0,r) = 0.

Claim. There exists w ∈ L2(B(0, R)) such that for all φ ∈ D(Rn),

〈φ, g〉B(0,r) = 〈P (D)φ,w〉B(0,R).

For the proof of the claim, we need to find C > 0 such that∣∣〈φ, g〉B(0,r)

∣∣ ≤ C||P (D)φ||B(0,R).

Notice that if P (D)φ = 0, then we have 〈φ, g〉 = 0. If P (D)φ 6= 0, then by Corollary 11.5 we
can find Ψ ∈ L2(B(0, R)) so that P (D)Ψ = P (D)φ and ||Ψ||B(0,R) ≤ C1||P (D)φ||B(0,R) for some
C1 > 0. Then

〈φ, g〉B(0,R) = 〈φ−Ψ, g〉B(0,R) + 〈Ψ, g〉B(0,R) = 〈Ψ, g〉B(0,R).

Hence, |〈φ, g〉B(0,R)| ≤ C||P (D)φ||B(0,R) with C = C1||g||, which proves the claim.

Pick w as given by the claim. Extend g and w on Rn to g̃ and w̃ by setting g̃ = 0 on Rn \B(0, r)
and w̃ = 0 on Rn\B(0, R). We then have g̃ = P ∗(D)w̃. Since w̃ has compact support, and P ∗(D)w̃
is supported in B(0, r), we conclude from Corollary 11.7 that w = 0 on B(0, R) \B(0, r).

To complete the proof of the proposition take v as at the beginning of the proof, and extend
it to be a smooth, compactly supported function on Rn (but no longer satisfying P (D)v = 0 off
B(0, r)). One has

〈v, g〉B(0,r) = 〈P (D)v, w〉B(0,R) = 〈P (D)v, w〉B(0,r) = 0.

�

We now can prove the following

Proposition 11.9. Let P (D) be a nonzero linear differential operator on Rn with constant coeffi-
cients. Then for every g ∈ L2

loc(Rn) there exists u ∈ L2
loc(Rn) such that P (D)u = g.

Proof. By Corollary 11.5 there exists u1 ∈ L2(B(0, 2)) so that P (D)u1 = g on B(0, 2). Then
inductively, assuming up has been chosen in L2(B(0, p + 1)) so that P (D)up = g, one chooses
up+1 in L2(B(0, p + 2)) in the following way. Let w be an arbitrary solution of P (D)w = g, in
L2(B(0, p + 2)). On B(0, p + 1) one has P (D)(up − w) = 0. By Proposition 11.8 there exists
v ∈ L2(B(0, p + 2)) such that P (D)v = 0, and ||v − (up − w)||B(0,p) ≤ 1/2p. Set up+1 = v + w.
Then P (D)up+1 = g on B(0, p+ 2), and ||up+1 − up||B(0,p) ≤ 1/2p. The sequence (up) is obviously

convergent in L2
loc(Rn), and its limit satisfies P (D)u = g. �

Proof of the Malgrange-Ehrenpreis Theorem. Let H be the function (product of the Heaviside func-
tions on R) defined on Rn by

H(x1, . . . , xn) =

{
1, if xj > 0, j = 1, . . . , n,

0, otherwise.
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Then
∂nH

∂x1 . . . ∂xn
= δ0.

Since H ∈ L2
loc(Rn), by the previous proposition there exists u ∈ L2

loc(Rn) so that P (D)u = H. Set

E =
∂nu

∂x1 . . . ∂xn
.

Then

P (D)E = P (D)
∂nu

∂x1 . . . ∂xn
=

∂n

∂x1 . . . ∂xn
(P (D)u) = δ0.

�


