REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

11. Fundamental solutions of differential operators

11.1. Fundamental solutions. In this section we study linear differential equations of the form

$$
\begin{equation*}
\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} u=f(x), f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

with constant coefficients $a_{\alpha} \in \mathbb{R}^{n}$. Define an order m linear differential operator

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, a_{\alpha} \in \mathbb{R}^{n}
$$

Then the partial differential equation (1) takes the form

$$
\begin{equation*}
P(D) u=f(x), f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \tag{2}
\end{equation*}
$$

Let Ω be a domain in \mathbb{R}^{n}. We say that $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a generalized solution of (2) in Ω if u satisfies this equation in Ω, that is,

$$
\sum_{|\alpha| \leq m} a_{\alpha}\left\langle D^{\alpha} u, \varphi\right\rangle=\langle f(x), \varphi\rangle
$$

for every $\varphi \in \mathcal{D}^{\prime}(\Omega)$.
Suppose that $f \in C(\Omega)$. If a function $u \in C^{m}(\Omega)$ satisfies (2), we call it a classical solution of (2). Obviously, if $u \in C^{m}(\Omega)$ is a generalized solution of (2), then it is a classical solution.

Definition 11.1. A distribution $E \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is called a fundamental solution of a differential operator $P(D)$ if

$$
P(D) E=\delta(x) .
$$

If u is a solution of the homogeneous equation $P(D) u=0$ then $E+u$ also is a fundamental solution of (2), so in general a fundamental solution is not unique. The importance of this notion stems from the following statement.

Theorem 11.2. Let $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ be a distribution such that the convolution

$$
u=E * f
$$

exists in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$. Then u is a solution of equation (2). Moreover, this solution of (2) is unique in the class of distributions in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ admitting the convolution with E.

Proof. Using the properties of convolution we obtain

$$
\begin{aligned}
& P(D)(E * f)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}(E * f)=\left(\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} E\right) * f \\
& =(P(D) E) * f=\delta * f=f
\end{aligned}
$$

Thus $u=E * f$ defines a solution of (2). In order to prove the uniqueness in the class of distributions, admitting the convolution with E, it suffices to prove that the homogeneous equation

$$
P(D) v=0
$$

has a unique solution in this class. But this holds since

$$
v=\delta * v=(P(D) E) * v=E *(P(D) v)=E * 0=0
$$

This proves the theorem.
Example 11.1. Let $P(D)=\frac{d^{2}}{d x^{2}}$ on \mathbb{R}. To solve the equation

$$
\begin{equation*}
P(D) u=\chi_{[0,1]} \tag{3}
\end{equation*}
$$

we first find a fundamental solution of the operator $P(D)$. If E satisfies $\frac{d^{2} E}{d x^{2}}=\delta$, then by Example 9.1 , we have $\frac{d E}{d x}=\theta+c_{1}$. For convenience we may take $c_{1}=-1 / 2$. Then $E=1 / 2|x|+c_{2}$. Take $c_{2}=0$, then $E=1 / 2|x|$ is a fundamental solution. The find a generalized solution of (3) we compute, according to Theorem 11.2, the convolution of the fundamental solution and the right-hand side of (3). Since one of the functions has compact support, the convolution is well-defined, so we have

$$
E * \chi_{[0,1]}(x)=\int_{\mathbb{R}} \frac{1}{2}|y| \chi_{[0,1]}(x-y) d y=\frac{1}{2} \int_{\mathbb{R}}|x-t| \chi_{[0,1]}(t) d t=\frac{1}{2} \int_{0}^{1}|x-t| d t
$$

This integral is a well defined C^{1}-smooth function on \mathbb{R} given by

$$
u(x)=\left\{\begin{array}{l}
-\frac{x^{2}}{2}+\frac{1}{4}, \quad \text { if } x \leq 0 \\
\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}, \quad \text { if } 0<x<1 \\
\frac{x^{2}}{2}-\frac{1}{4}, \quad \text { if } x \geq 1
\end{array}\right.
$$

\diamond
In the next section we compute fundamental solutions of the classical linear operators in \mathbb{R}^{n}.
11.2. Malgrange-Ehrenpreis theorem. The following fundamental result is obtained independently by B. Malgrange and L. Ehrenpreis in 1954-55.

Theorem 11.3. A linear differential operator with constant coefficients admits a fundamental solution in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

We will follow the proof given by J.-P. Rosay (Amer. Math. Monthly, 98 (1991), no. 6, p. $518-523$.). In what follows it will be convenient to assume that all functions are complex valued. We denote by $\|\cdot\|$ the L^{2}-norm on \mathbb{R}^{n}, and

$$
\langle\phi, \psi\rangle=\int_{\mathbb{R}^{n}} \phi \bar{\psi}
$$

be the corresponding scalar product. If $P(D)$ is a linear differential operator with constant coefficients of order m, then its adjoint operator $P^{*}(D)$ is defined by the identity

$$
\langle A \phi, \psi\rangle=\left\langle\phi, A^{*} \psi\right\rangle \quad \text { for all } \phi, \psi \in L^{2}\left(\mathbb{R}^{n}\right)
$$

In particular, if

$$
\begin{equation*}
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} \frac{\partial^{|\alpha|}}{\partial x_{\alpha}}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tag{4}
\end{equation*}
$$

then the adjoint operator takes the form

$$
P^{*}(D)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \bar{a}_{\alpha} \frac{\partial^{|\alpha|}}{\partial x_{\alpha}}
$$

Proposition 11.4 (Hörmander's inequality). Let $P(D)$ be a nonzero linear differential operator with constant coefficients of order m given by (4). Then for every bounded domain $\Omega \subset \mathbb{R}^{n}$, there exists a constant $C>0$, such that for every $\phi \in \mathcal{D}(\Omega)$, we have

$$
\|P(D) \phi\| \geq C\|\phi\| .
$$

One can take $C=|P|_{m} K_{m, \Omega}$, where

$$
|P|_{m}=\max _{|\alpha|=m}\left\{\left|a_{\alpha}\right|\right\},
$$

and $K_{m, \Omega}$ depends only on m and the quantity $\{\sup |x|: x \in \Omega\}$.
Proof. To illustrate the idea of the proof first consider the case $n=1, \Omega=(0,1)$, and $P(D)=d / d x$. We need to show that there exists some $C>0$ such that $\left\|\phi^{\prime}\right\| \geq C\|\phi\|$ for all $\phi \in \mathcal{D}((0,1))$. We have

$$
\left\langle(x \phi)^{\prime}, \phi\right\rangle=\left\langle x \phi^{\prime}, \phi\right\rangle+\langle\phi, \phi\rangle .
$$

Using integration by parts, $\left\langle(x \phi)^{\prime}, \phi\right\rangle=-\left\langle x \phi, \phi^{\prime}\right\rangle$, and so $\langle\phi, \phi\rangle=-\left\langle x \phi^{\prime}, \phi\right\rangle-\left\langle x \phi, \phi^{\prime}\right\rangle$. Since $|x|<1$, we get $\|\phi\|^{2} \leq 2\left\|\phi^{\prime}\right\|\|\phi\|$, by the Hölder inequality (Thm 4.2). Hence, $\left\|\phi^{\prime}\right\| \geq 1 / 2\|\phi\|$.

The general case is proved by induction on the degree of P. Define a linear differential operator with constant coefficients $P_{j}(D)$ by the following identity

$$
P(D)\left(x_{j} \phi\right)=x_{j} P(D) \phi+P_{j}(D) \phi .
$$

The operator $P_{j}(D)$ is zero iff $P(D)$ does not involve any differentiation with respect to x_{j}. If it is nonzero, then $P_{j}(D)$ is of order at most $m-1$. Let $A=\sup _{x \in \Omega}|x|$. By induction on m, we will show that for every $\phi \in \mathcal{D}(\Omega)$,

$$
\begin{equation*}
\left\|P_{j}(D) \phi\right\| \leq 2 m A\|P(D) \phi\| . \tag{5}
\end{equation*}
$$

Observe that (5) and the definition of P_{j} yield

$$
\begin{equation*}
\left\|P(D)\left(x_{j} \phi\right)\right\| \leq(2 m+1) A\|P(D) \phi\| . \tag{6}
\end{equation*}
$$

Since differential operators with constant coefficients commute, we have for all $\phi \in \mathcal{D}(\Omega)$,

$$
\begin{array}{r}
\|P(D) \phi\|^{2}=\langle P(D) \phi, P(D) \phi\rangle=\left\langle\phi, P^{*}(D) P(D) \phi\right\rangle=\left\langle\phi, P(D) P^{*}(D) \phi\right\rangle \\
=\left\langle P^{*}(D) \phi, P^{*}(D) \phi\right\rangle=\left\|P^{*}(D) \phi\right\|^{2} .
\end{array}
$$

The inequality (5) is trivial for $m=0$, since then $P_{j}(D)=0$. Assuming that (5) is verified for operators of order $m-1$, we compute $\left\langle P(D)\left(x_{j} \phi\right), P_{j}(D) \phi\right\rangle$ in two different ways. From the definition of $P_{j}(D)$ we have,

$$
\left\langle P(D)\left(x_{j} \phi\right), P_{j}(D) \phi\right\rangle=\left\langle x_{j} P(D) \phi, P_{j}(D) \phi\right\rangle+\left\|P_{j}(D) \phi\right\|^{2} .
$$

By integration by parts (i.e., using the definition of the adjoint) and using commutativity of $P^{*}(D)$ and $P_{j}(D)$, we obtain

$$
\left\langle P(D)\left(x_{j} \phi\right), P_{j}(D) \phi\right\rangle=\left\langle P_{j}^{*}(D)\left(x_{j} \phi\right), P^{*}(D) \phi\right\rangle .
$$

Therefore,

$$
\begin{equation*}
\left\|P_{j}(D) \phi\right\|^{2}=\left\langle P_{j}^{*}(D)\left(x_{j} \phi\right), P^{*}(D) \phi\right\rangle-\left\langle x_{j} P(D) \phi, P_{j}(D) \phi\right\rangle . \tag{7}
\end{equation*}
$$

RASUL SHAFIKOV
By the induction hypothesis, equation (6) holds for all operators of order $m-1$, which when applied to $P_{j}^{*}(D)$ yields

$$
\left\|P_{j}^{*}(D)\left(x_{j} \phi\right)\right\| \leq(2 m-1) A\left\|P_{j}(D) \phi\right\| .
$$

And, since

$$
\left|\left\langle x_{j} P(D) \phi, P_{j}(D) \phi\right\rangle\right| \leq A\|P(D) \phi\|\left\|P_{j}(D) \phi\right\|,
$$

we obtain from (7) that

$$
\left\|P_{j}(D) \phi\right\|^{2} \leq 2 m A\left\|P_{j}(D) \phi\right\|\|P(D) \phi\|
$$

which proves (5). If $P(D)$ is an operator of order $m \geq 1$, there exists $j \in\{1, \ldots, n\}$ such that $P_{j}(D)$ is of order $m-1$, and $\left|P_{j}\right|_{m-1} \geq|P|_{m}$. Thus the proposition follows from (5) by induction on m.
Corollary 11.5. If Ω is a bounded domain in \mathbb{R}^{n}, then for every $g \in L^{2}(\Omega)$ there exists $u \in L^{2}(\Omega)$ such that $P(D) u=g$.
Proof. This follows from the inequality $\left\|P^{*}(D) \phi\right\| \geq C\|\phi\|, \phi \in \mathcal{D}(\Omega)$. Indeed, $P(D) u=g$ means that for all $\phi \in \mathcal{D}(\Omega)$,

$$
\begin{equation*}
\langle g, \phi\rangle=\left\langle u, P^{*}(D) \phi\right\rangle . \tag{8}
\end{equation*}
$$

Let

$$
E=\left\{\psi \in \mathcal{D}(\Omega), \psi=P^{*}(D) \phi \text { for some } \phi \in \mathcal{D}(\Omega)\right\}
$$

Consider the (anti)linear functional $l: E \rightarrow \mathbb{C}$ given by

$$
l(\psi)=\langle g, \phi\rangle, \text { where } \psi=P^{*}(D) \phi
$$

Then using Hörmander's inequality we have

$$
\|l\|=\sup _{\|\psi\|=1}|\langle g, \phi\rangle| \leq\|g\| \sup _{\|\psi\|=1}\|\phi\| \leq \frac{\|g\|}{C} \sup _{\|\psi\|=1}\left\|P^{*}(D) \phi\right\|=\frac{\|g\|}{C} .
$$

This shows that l is a bounded linear functional on E with L^{2}-norm. Therefore, l can be extended to \bar{E}, the closure of E in $L^{2}(\Omega)$. Then the Riesz representation theorem (Theorem 4.11) gives the existence of $u \in \bar{E}$ such that $l(\psi)=\langle u, \psi\rangle$. This implies equation (8).

We now wish to extend the above result to $L_{l o c}^{2}(\Omega)$ functions. For this we first prove the following
Proposition 11.6. There exists $C^{\prime}>0$ such that for all $\eta \in \mathbb{R}$ and $\phi \in \mathcal{D}(\Omega)$, we have

$$
\int_{\Omega} e^{\eta x_{1}}|P(D) \phi|^{2} \geq C^{\prime} \int_{\Omega} e^{\eta x_{1}}|\phi|^{2}
$$

Note that C^{\prime} is independent of η.
Proof. Apply Hörmander's inequality to $\Psi=e^{(\eta / 2) x_{1}} \phi$ and operator $Q(D)$ defined by

$$
Q(D)(\Psi)=e^{(\eta / 2) x_{1}} P(D)\left[e^{-(\eta / 2) x_{1}} \Psi\right]
$$

which is indeed a constant coefficient operator of the same degree m as $P(D)$.
Corollary 11.7. Let $\phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ or more generally $\phi \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support. If $P(D) \phi$ is supported in the ball $B(0, r)$, then so is ϕ.
Proof. By letting $\eta \rightarrow+\infty$ in Proposition 11.6, one can immediately verify that if $P(D) \phi=0$ in the half-space $\left\{x_{1}>0\right\}$, then $\phi=0$ there. From this, using translations and rotations, the corollary can be verified in the case of a smooth ϕ. In the nonsmooth case, for $\varepsilon<1$ consider the regularization $\phi_{\varepsilon}=\phi * \omega_{e} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Then $P(D) \phi_{\varepsilon}=P(D) \phi * \omega_{\varepsilon}$ is supported in $B(0, r+\varepsilon)$ and $\phi_{\varepsilon} \rightarrow \phi$ in L^{2} as $\varepsilon \rightarrow 0$ by Proposition 10.8. This reduces the problem to the smooth case.

Proposition 11.8. Let $0<r<r^{\prime}<R$. If $v \in L^{2}\left(B\left(0, r^{\prime}\right)\right)$ and satisfy $P(D) v=0$ on $B\left(0, r^{\prime}\right)$, then there exists a sequence $\left(v_{j}\right) \subset L^{2}(B(0, R))$ such that $P(D) v_{j}=0$ on $B(0, R)$ and $v_{j} \rightarrow v$ in $L^{2}(B(0, r))$ as $j \rightarrow \infty$.
Proof. After regularization we can assume that v is smooth, possibly shrinking r^{\prime} slightly. It suffices to show that any continuous linear functional that vanishes on the space $L^{2}(B(0, R)) \cap\{\alpha: P(D) \alpha=$ $0\}$ also vanishes at v. In other words (using the Riesz representation theorem), we have to show that if $g \in L^{2}(B(0, r))$ and satisfies $\langle\alpha, g\rangle_{B(0, r)}=0$ for all $\alpha \in L^{2}(B(0, R))$ with $P(D) \alpha=0$, then $\langle v, g\rangle_{B(0, r)}=0$.
Claim. There exists $w \in L^{2}(B(0, R))$ such that for all $\phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$,

$$
\langle\phi, g\rangle_{B(0, r)}=\langle P(D) \phi, w\rangle_{B(0, R)}
$$

For the proof of the claim, we need to find $C>0$ such that

$$
\left|\langle\phi, g\rangle_{B(0, r)}\right| \leq C| | P(D) \phi \|_{B(0, R)}
$$

Notice that if $P(D) \phi=0$, then we have $\langle\phi, g\rangle=0$. If $P(D) \phi \neq 0$, then by Corollary 11.5 we can find $\Psi \in L^{2}(B(0, R))$ so that $P(D) \Psi=P(D) \phi$ and $\|\Psi\|_{B(0, R)} \leq C_{1}\|P(D) \phi\|_{B(0, R)}$ for some $C_{1}>0$. Then

$$
\langle\phi, g\rangle_{B(0, R)}=\langle\phi-\Psi, g\rangle_{B(0, R)}+\langle\Psi, g\rangle_{B(0, R)}=\langle\Psi, g\rangle_{B(0, R)}
$$

Hence, $\left|\langle\phi, g\rangle_{B(0, R)}\right| \leq C\|P(D) \phi\|_{B(0, R)}$ with $C=C_{1}\|g\|$, which proves the claim.
Pick w as given by the claim. Extend g and w on \mathbb{R}^{n} to \tilde{g} and \tilde{w} by setting $\tilde{g}=0$ on $\mathbb{R}^{n} \backslash B(0, r)$ and $\tilde{w}=0$ on $\mathbb{R}^{n} \backslash B(0, R)$. We then have $\tilde{g}=P^{*}(D) \tilde{w}$. Since \tilde{w} has compact support, and $P^{*}(D) \tilde{w}$ is supported in $B(0, r)$, we conclude from Corollary 11.7 that $w=0$ on $B(0, R) \backslash B(0, r)$.

To complete the proof of the proposition take v as at the beginning of the proof, and extend it to be a smooth, compactly supported function on \mathbb{R}^{n} (but no longer satisfying $P(D) v=0$ off $B(0, r))$. One has

$$
\langle v, g\rangle_{B(0, r)}=\langle P(D) v, w\rangle_{B(0, R)}=\langle P(D) v, w\rangle_{B(0, r)}=0
$$

We now can prove the following
Proposition 11.9. Let $P(D)$ be a nonzero linear differential operator on \mathbb{R}^{n} with constant coefficients. Then for every $g \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right)$ there exists $u \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right)$ such that $P(D) u=g$.
Proof. By Corollary 11.5 there exists $u_{1} \in L^{2}(B(0,2))$ so that $P(D) u_{1}=g$ on $B(0,2)$. Then inductively, assuming u_{p} has been chosen in $L^{2}\left(B(0, p+1)\right.$) so that $P(D) u_{p}=g$, one chooses u_{p+1} in $L^{2}(B(0, p+2))$ in the following way. Let w be an arbitrary solution of $P(D) w=g$, in $L^{2}(B(0, p+2))$. On $B(0, p+1)$ one has $P(D)\left(u_{p}-w\right)=0$. By Proposition 11.8 there exists $v \in L^{2}(B(0, p+2))$ such that $P(D) v=0$, and $\left\|v-\left(u_{p}-w\right)\right\|_{B(0, p)} \leq 1 / 2^{p}$. Set $u_{p+1}=v+w$. Then $P(D) u_{p+1}=g$ on $B(0, p+2)$, and $\left\|u_{p+1}-u_{p}\right\|_{B(0, p)} \leq 1 / 2^{p}$. The sequence (u_{p}) is obviously convergent in $L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$, and its limit satisfies $P(D) u=g$.

Proof of the Malgrange-Ehrenpreis Theorem. Let H be the function (product of the Heaviside functions on \mathbb{R}) defined on \mathbb{R}^{n} by

$$
H\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1, \text { if } x_{j}>0, j=1, \ldots, n \\
0, \text { otherwise }
\end{array}\right.
$$

6
Then
RASUL SHAFIKOV

$$
\frac{\partial^{n} H}{\partial x_{1} \ldots \partial x_{n}}=\delta_{0}
$$

Since $H \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right)$, by the previous proposition there exists $u \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right)$ so that $P(D) u=H$. Set

$$
E=\frac{\partial^{n} u}{\partial x_{1} \ldots \partial x_{n}}
$$

Then

$$
P(D) E=P(D) \frac{\partial^{n} u}{\partial x_{1} \ldots \partial x_{n}}=\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}(P(D) u)=\delta_{0}
$$

