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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

11. FUNDAMENTAL SOLUTIONS OF DIFFERENTIAL OPERATORS

11.1. Fundamental solutions. In this section we study linear differential equations of the form

(1) Z ao D% = f(l’), S D,(Rn)v

la]<m
with constant coeflicients a, € R™. Define an order m linear differential operator
= Z aoaD%, an € R™.
la]<m
Then the partial differential equation (1) takes the form
(2) P(D)u= f(z), f € D'(R").

Let Q be a domain in R™. We say that u € D'(R") is a generalized solution of (2) in Q if u
satisfies this equation in €2, that is,

Z aa<Dau7 30> = (f(:C),(p>
la|<m

for every ¢ € D'(Q).
Suppose that f € C(Q). If a function u € C™(Q) satisfies (2), we call it a classical solution of
(2). Obviously, if u € C™(£2) is a generalized solution of (2), then it is a classical solution.

Definition 11.1. A distribution E € D'(R™) is called a fundamental solution of a differential
operator P(D) if

P(D)E = §(x).

If u is a solution of the homogeneous equation P(D)u = 0 then E + u also is a fundamental
solution of (2), so in general a fundamental solution is not unique. The importance of this notion
stems from the following statement.

Theorem 11.2. Let f € D'(R™) be a distribution such that the convolution
u=FExf

exists in D'(R™). Then u is a solution of equation (2). Moreover, this solution of (2) is unique in
the class of distributions in D'(R™) admitting the convolution with E.

Proof. Using the properties of convolution we obtain

PD)Exf)= > aaD*(Exf)=| D aaDE | *f

laj<m |laj<m

=(P(D)E)x f=0dxf=F.
1
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Thus u = Exf defines a solution of (2). In order to prove the uniqueness in the class of distributions,
admitting the convolution with F, it suffices to prove that the homogeneous equation

P(D)yv=0
has a unique solution in this class. But this holds since
v=0%v=(PD)E)*xv=E=x*(P(D)v)=E*0=0.
This proves the theorem. ]

Example 11.1. Let P(D) = % on R. To solve the equation

3) P(D)u = Xjo,1]
we first find a fundamental solution of the operator P(D). If E satisfies ‘é? = ¢, then by Exam-
ple 9.1, we have % = 0+ c;. For convenience we may take ¢c; = —1/2. Then E = 1/2|z|+ cy. Take

ca =0, then F = 1/2|z| is a fundamental solution. The find a generalized solution of (3) we com-
pute, according to Theorem 11.2, the convolution of the fundamental solution and the right-hand
side of (3). Since one of the functions has compact support, the convolution is well-defined, so we
have

1
Ex x01)(z) = /R §|Z/’X[O,1] (- / |z — t|x[0,1)(t)dt = / |z — t|dt.
This integral is a well defined C'-smooth function on R given by

+ 1, if 2 <0,
—f4lifo<a <,
1
i

In the next section we compute fundamental solutions of the classical linear operators in R".

11.2. Malgrange-Ehrenpreis theorem. The following fundamental result is obtained indepen-
dently by B. Malgrange and L. Ehrenpreis in 1954-55.

Theorem 11.3. A linear differential operator with constant coefficients admits a fundamental
solution in D'(R™).

We will follow the proof given by J.-P. Rosay ( Amer. Math. Monthly, 98 (1991), no. 6, p.
518-523.). In what follows it will be convenient to assume that all functions are complex valued.
We denote by || - || the L?-norm on R", and

(o0)= [ 0¥
Rn

be the corresponding scalar product. If P(D) is a linear differential operator with constant coeffi-
cients of order m, then its adjoint operator P*(D) is defined by the identity

(A, ) = (¢, A*p)  for all ¢,1p € L*(R™).

In particular, if

||
(4) Zaaa ,a—(al,..., n)s

|a|<m
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then the adjoint operator takes the form

. ol olal
P*D)= > (-1 laaa?a.

laf<m

Proposition 11.4 (Hormander’s inequality). Let P(D) be a nonzero linear differential operator
with constant coefficients of order m given by (4). Then for every bounded domain Q C R™, there
exists a constant C > 0, such that for every ¢ € D(Q2), we have

1P(D)¢ll = Cll¢ll.
One can take C = |P|y, Ky, 0, where

[Pl = max {|aa},
la|=m

and Ky, o depends only on m and the quantity {sup |z| : = € Q}.

Proof. To illustrate the idea of the proof first consider the case n = 1, Q = (0, 1), and P(D) = d/dz.
We need to show that there exists some C' > 0 such that ||¢/|| > C||¢]|| for all ¢ € D((0,1)). We
have

((z0), 0) = (x¢', 8) + (8, 9).
Using integration by parts, ((z¢),¢) = —(x¢,d’), and so (¢,¢) = —(x¢d',¢) — (v¢,d’). Since
lz| < 1, we get ||¢]|? < 2||¢'|| ||¢|], by the Hélder inequality (Thm 4.2). Hence, ||¢'|| > 1/2||¢]|.
The general case is proved by induction on the degree of P. Define a linear differential operator
with constant coefficients P;(D) by the following identity

P(D)(xj¢) = z;P(D)¢ + Pj(D)¢.
The operator P;(D) is zero iff P(D) does not involve any differentiation with respect to x;. If it is

nonzero, then P;(D) is of order at most m — 1. Let A = sup,cq |z|. By induction on m, we will
show that for every ¢ € D(2),

() 1P5(D)ol] < 2mA||P(D)g]|.
Observe that (5) and the definition of P; yield
(6) 1P(D)(x;9)]| < (2m +1)A||P(D)s||.

Since differential operators with constant coefficients commute, we have for all ¢ € D(Q),
|P(D)¢||> = (P(D)¢, P(D)¢) = (¢, P*(D)P(D)¢) = (¢, P(D)P*(D)¢)
= (P*(D)¢, P*(D)¢) = || P*(D)¢|[.
The inequality (5) is trivial for m = 0, since then P;(D) = 0. Assuming that (5) is verified

for operators of order m — 1, we compute (P(D)(z;¢), Pj(D)¢) in two different ways. From the
definition of Pj(D) we have,

(P(D)(x;0), P{(D)¢) = (x;P(D)¢, Pj(D)¢) + || P;(D)o||.
By integration by parts (i.e., using the definition of the adjoint) and using commutativity of P*(D)
and P;(D), we obtain

(P(D)(z;¢), Pj(D)¢) = (P} (D)(x;¢), P*(D)).

Therefore,

(7) |1P;(D)g|[* = (P} (D)(x;6), P*(D)) — {x;P(D)¢, F;(D)).
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By the induction hypothesis, equation (6) holds for all operators of order m— 1, which when applied
to P7(D) yields

1P} (D) (z;9)|| < (2m —1)A||P;(D)¢]|.
And, since

[(z;P(D)o, Pj(D)¢)| < Al[P(D)¢l[ |[P;(D)el],

we obtain from (7) that

15 (D)¢l|* < 2mA||P;(D)é|| [|P(D)gl],
which proves (5). If P(D) is an operator of order m > 1, there exists j € {1,...,n} such that
P;(D) is of order m — 1, and |Pj|;m—1 > |P|p. Thus the proposition follows from (5) by induction
on m. N

Corollary 11.5. If Q is a bounded domain in R", then for every g € L*(Q) there exists u € L*(Q)
such that P(D)u = g.

Proof. This follows from the inequality ||P*(D)¢|| > C||¢||, ¢ € D(Q2). Indeed, P(D)u = g means
that for all ¢ € D(2),
(8) (9,0) = (u, P*(D)9).
Let

E={yeD), »=P*(D)¢ for some ¢ € D(Q)}.
Consider the (anti)linear functional [ : E — C given by

I(¢) = (g,9), where ¢ =P*(D)g.

Then using Hérmander’s inequality we have

= sup 1(9.9)1 < llall sup l6l] < 40 sup 1P+ (D)ol = 141
[ll|=1 [1ll=1 [

This shows that [ is a bounded linear functional on E with L?-norm. Therefore, | can be extended
to E, the closure of E in L*(Q2). Then the Riesz representation theorem (Theorem 4.11) gives the
existence of u € E such that [(¢)) =< u,® >. This implies equation (8). O

We now wish to extend the above result to L2 () functions. For this we first prove the following

Proposition 11.6. There exists C' > 0 such that for alln € R and ¢ € D(Q)), we have
[emipmor = e [ o
Q Q
Note that C’ is independent of 7.
Proof. Apply Hérmander’s inequality to ¥ = e("/2)*1 ¢ and operator Q(D) defined by
QD)(W) = el p(D)[e~ /7 g,
which is indeed a constant coefficient operator of the same degree m as P(D). O

Corollary 11.7. Let ¢ € D(R") or more generally ¢ € L?(R™) with compact support. If P(D)¢ is
supported in the ball B(0,r), then so is ¢.

Proof. By letting n — 400 in Proposition 11.6, one can immediately verify that if P(D)¢ = 0
in the half-space {x; > 0}, then ¢ = 0 there. From this, using translations and rotations, the
corollary can be verified in the case of a smooth ¢. In the nonsmooth case, for ¢ < 1 consider the
regularization ¢. = ¢ * we € D(R™). Then P(D)¢p. = P(D)¢ * w is supported in B(0,r + ¢) and
¢ — ¢ in L? as ¢ — 0 by Proposition 10.8. This reduces the problem to the smooth case. U
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Proposition 11.8. Let 0 < r < v’ < R. Ifv € L*(B(0,7")) and satisfy P(D)v = 0 on B(0,7"),
then there exists a sequence (vj) C L?(B(0, R)) such that P(D)v; = 0 on B(0,R) and v; — v in
L*(B(0,7)) as j — oo.

Proof. After regularization we can assume that v is smooth, possibly shrinking 7’ slightly. It suffices
to show that any continuous linear functional that vanishes on the space L?(B(0, R))N{a : P(D)a =
0} also vanishes at v. In other words (using the Riesz representation theorem), we have to show
that if g € L?(B(0,7)) and satisfies (o, g) p(o,») = 0 for all @ € L*(B(0, R)) with P(D)a = 0, then
<U7g>B(0,r) =0.

Claim. There exists w € L?(B(0, R)) such that for all ¢ € D(R"),

(6, 9)B(0.r) = (P(D)9, w)p(0,R)-
For the proof of the claim, we need to find C' > 0 such that

(6. 9) B0 | < CIIP(D)l|50,R)-

Notice that if P(D)¢ = 0, then we have (¢,g) = 0. If P(D)¢ # 0, then by Corollary 11.5 we
can find ¥ € L*(B(0, R)) so that P(D)¥ = P(D)¢ and |[¥||g,r) < C1||P(D)¢||p(o,r) for some
C1 > 0. Then

(9,9)B0,R) = (= V¥, 9)B(0,R) + (¥, 9)B(0,R) = (¥, 9) B(0,R)-
Hence, [{¢,9)B(o,r)| < Cl|P(D)¢l|po,r) With C = C1l|g]|, which proves the claim.

Pick w as given by the claim. Extend g and w on R™ to g and w by setting g = 0 on R™\ B(0, r)
and w = 0 on R™\ B(0, R). We then have § = P*(D)w. Since w has compact support, and P*(D)w
is supported in B(0,r), we conclude from Corollary 11.7 that w = 0 on B(0, R) \ B(0,).

To complete the proof of the proposition take v as at the beginning of the proof, and extend
it to be a smooth, compactly supported function on R™ (but no longer satisfying P(D)v = 0 off
B(0,7)). One has

(v, 9) B0y = (P(D)v,w)po,r) = (P(D)v,w)po, = 0.

We now can prove the following

Proposition 11.9. Let P(D) be a nonzero linear differential operator on R™ with constant coeffi-
cients. Then for every g € L? (R") there exists u € L? _(R™) such that P(D)u = g.

loc loc

Proof. By Corollary 11.5 there exists u; € L?(B(0,2)) so that P(D)u; = g on B(0,2). Then
inductively, assuming wu, has been chosen in L?(B(0,p + 1)) so that P(D)u, = g, one chooses
upt1 in L2(B(0,p + 2)) in the following way. Let w be an arbitrary solution of P(D)w = g, in
L*(B(0,p + 2)). On B(0,p + 1) one has P(D)(u, — w) = 0. By Proposition 11.8 there exists
v € L*(B(0,p + 2)) such that P(D)v = 0, and |[v — (up — w)||pop) < 1/2P. Set upp1 = v + w.
Then P(D)upi1 = g on B(0,p+2), and |[up1 — upl|po,p) < 1/2P. The sequence (uy) is obviously
convergent in L? (R™), and its limit satisfies P(D)u = g. O

loc

Proof of the Malgrange-Ehrenpreis Theorem. Let H be the function (product of the Heaviside func-
tions on R) defined on R™ by

1, ifz;>0, j=1,....m,
H(IL‘l,...,ZL‘n)_{ J J

10, otherwise.



6 RASUL SHAFIKOV

Then
ord 5

oxy...0x, O

Since H € L} _(R™), by the previous proposition there exists u € L2 (R") so that P(D)u = H. Set
0"u

E= 0x1...0z,

Then . .
P(D)E = P(D)— "% — " (p(Dyu) = .

ox1...0x, Oxi...0x,



