REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

12. Fundamental solutions of classical operators.

12.1. More advanced examples. Here we consider examples concerning distributions in \mathbb{R}^{n}, $n>1$. One of the most important examples is given by the Cauchy-Riemann operator $\frac{\partial}{\partial \bar{z}}=$ $\frac{1}{2}\left(\frac{\partial}{\partial \bar{x}}+i \frac{\partial}{\partial \bar{y}}\right)$ on the complex plane $\mathbb{C} \cong \mathbb{R}^{2}$ with the coordinate $z=x+i y$. This is a differential operator with constant coefficients of order one.

First of all we adapt the integration by parts (formula (12) in Section 5.2) to the complex notation. Let Ω be a bounded domain with C^{1} boundary in \mathbb{C} and f be a complex function of class $C(\bar{\Omega})$. We suppose that (a connected component of) $\partial \Omega$ is positively parametrized by the map $[a, b] \ni t \mapsto x(t)+i y(t)$ of class C^{1}. Then

$$
\vec{n}=\frac{\left(y^{\prime}(t),-x^{\prime}(t)\right)}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}}
$$

is the vector field of the unit outward normal. Then, from the definition of the surface integral (see Section 5.1) and using the notation $d z=d x+i d y$, we have

$$
\int_{\partial \Omega} f\left[\left(\vec{n}, \vec{e}_{1}\right)+i\left(\vec{n}, \vec{e}_{2}\right)\right] d S=\int_{a}^{b} f(x(t), y(t))\left(y^{\prime}(t)-i x^{\prime}(t)\right) d t=-i \int_{\partial \Omega} f(z) d z
$$

Keeping this in mind, we pass to the integration by parts with the Cauchy-Riemann operator. For two complex-valued functions $u, v \in C^{1}(\bar{\Omega})$ we have

$$
\begin{aligned}
& \int_{\Omega} \frac{\partial u}{\partial \bar{z}} v d x d y=\frac{1}{2} \int_{\Omega} \frac{\partial u}{\partial x} v d x d y+\frac{i}{2} \int_{\Omega} \frac{\partial u}{\partial y} v d x d y=\frac{1}{2}\left(\int_{\partial \Omega} u v\left(\vec{n}, e_{1}\right) d S-\int_{\Omega} u \frac{\partial v}{\partial x} d x d y\right) \\
& +\frac{i}{2}\left(\int_{\partial \Omega} u v\left(\vec{n}, e_{2}\right) d S-\int_{\Omega} u \frac{\partial v}{\partial y} d x d y\right)=\frac{1}{2} \int_{\partial \Omega} u v\left[\left(\vec{n}, e_{1}\right)+i\left(\vec{n}, e_{2}\right)\right] d S-\int_{\Omega} u \frac{\partial v}{\partial \bar{z}} d x d y \\
& =\frac{-i}{2} \int_{\partial \Omega} u v d z-\int_{\Omega} u \frac{\partial v}{\partial \bar{z}} d x d y .
\end{aligned}
$$

Thus we obtain the following useful integration by parts formula:

$$
\begin{equation*}
\int_{\Omega} \frac{\partial u}{\partial \bar{z}} v d x d y=\frac{-i}{2} \int_{\partial \Omega} u v d z-\int_{\Omega} u \frac{\partial v}{\partial \bar{z}} d x d y \tag{1}
\end{equation*}
$$

Lemma 12.1. The function $\frac{1}{\pi z}$ is the fundamental solution of the operator $\frac{\partial}{\partial \bar{z}}$, i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}} \frac{1}{z}=\pi \delta(x, y) \tag{2}
\end{equation*}
$$

Proof. First note that $\frac{1}{z} \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ (use the polar coordinates to verify this), and so $\frac{1}{z}$ defines a regular distribution. Let $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ be a (complex-valued) test function with $\operatorname{supp} \varphi \subset \mathrm{B}(0, \mathrm{R})$.

For $\varepsilon>0$ denote by $A(\varepsilon, R)$ the annulus $B(0, R) \backslash \overline{B(0, \varepsilon)}$. Denote also by C_{ε} the circle $\{|z|=\varepsilon\}$. Then $\frac{\partial}{\partial \bar{z}} \frac{1}{z}=0$ on $A(\varepsilon, R)$ and using (1) with $u=\phi$ and $v=1 / z$ we have

$$
\left\langle\frac{\partial}{\partial \bar{z}} \frac{1}{z}, \varphi\right\rangle=-\left\langle\frac{1}{z}, \frac{\partial \varphi}{\partial \bar{z}}\right\rangle=-\lim _{\varepsilon \longrightarrow 0+} \int_{\Omega_{\varepsilon}} \frac{1}{z} \frac{\partial \varphi}{\partial \bar{z}} d x d y=\lim _{\varepsilon \longrightarrow 0+}-\frac{i}{2} \int_{C_{\varepsilon}} \frac{\varphi}{z} d z .
$$

Here the integral over the circle C_{ε} is taken with positive orientation with respect to the disc $B(0, \varepsilon)$. Writing

$$
\int_{C_{\varepsilon}} \frac{\varphi}{z} d z=\int_{C_{\varepsilon}} \frac{\varphi(z)-\varphi(0)}{z} d z+\varphi(0) \int_{C_{\varepsilon}} \frac{d z}{z},
$$

we easily see that the first integral tends to 0 (use Taylor's formula) and the second one tends to $2 \pi i \varphi(0)$. Hence,

$$
\lim _{\varepsilon \longrightarrow 0+}-\frac{i}{2} \int_{C_{\varepsilon}} \frac{\varphi}{z} d z=\pi \varphi(0),
$$

which concludes the proof.
Using Lemma 12.1 we can easily deduce an integral representation involving the Cauchy-Riemann operator. Fix $z \in \Omega$. Denote by Ω_{ε} the domain $\Omega \backslash B(z, \varepsilon)$ and by $C(z, \varepsilon)$ the circle $\{\zeta:|\zeta-z|=\varepsilon\}$. Let a complex function f be of class $C^{1}(\bar{\Omega})$. We set $\zeta=\xi+i \eta$. Then, using (1) and (2), we have

$$
\begin{aligned}
& \frac{1}{\pi} \int_{\Omega} \frac{\partial f(\zeta)}{\partial \bar{\zeta}} \frac{1}{\zeta-z} d \xi d \eta=\lim _{\varepsilon \rightarrow 0+} \int_{\Omega_{\varepsilon}} \frac{\partial f(\zeta)}{\partial \bar{\zeta}} \frac{1}{\zeta-z} d \xi d \eta \\
& =\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0+}\left(\frac{-i}{2} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta+\frac{i}{2} \int_{C(z, \varepsilon)} \frac{f(\zeta)}{\zeta-z} d \zeta\right)=\frac{-i}{2 \pi} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta-f(z)
\end{aligned}
$$

Thus we obtained the so-called Cauchy-Green formula

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{\pi} \int_{\Omega} \frac{\partial f(\zeta)}{\partial \bar{\zeta}} \frac{1}{\zeta-z} d \xi d \eta \tag{3}
\end{equation*}
$$

In particular, if f is holomorphic, i.e., $\frac{\partial f(\zeta)}{\partial \bar{\zeta}}=0$ in Ω, we have the classical Cauchy integral formula

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{4}
\end{equation*}
$$

It is also easy to deduce now the Cauchy theorem. Let D be a domain in \mathbb{C} and γ be a closed simple path in D homotopic to 0 . If f is a holomorphic function in D, then

$$
\begin{equation*}
\int_{\gamma} f(z) d z=0 \tag{5}
\end{equation*}
$$

Indeed, consider the domain $\Omega \subset D$ bounded by γ. Since γ is homotopic to 0 , the boundary $\partial \Omega$ of Ω coincides with γ (with suitable orientation). Fix $z \in \Omega$. By the Cauchy formula we have

$$
\begin{aligned}
& \int_{\gamma} f(\zeta) d \zeta=\int_{\gamma} \frac{(\zeta-z) f(\zeta)}{\zeta-z} d \zeta=\int_{\gamma} \frac{\zeta f(\zeta)}{\zeta-z} d \zeta-z \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta \\
& =2 \pi i z f(z)-2 \pi i z f(z)=0
\end{aligned}
$$

which proves (5).
The next example is a generalization of Example (9.2).

Example 12.1. Let Ω be a bounded domain with C^{1} boundary and $f \in C^{1}(\bar{\Omega}) \cap C^{1}\left(\mathbb{R}^{n} \backslash \Omega\right)$ (in particular, all discontinuity points of f belong to $\partial \Omega$). The usual partial derivative $\frac{\partial f}{\partial x_{k}}$ is defined and locally integrable on $\mathbb{R}^{n} \backslash \partial \Omega$ so we can consider the regular distribution $T_{\frac{\partial f}{\partial x_{k}}} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$. We also introduce the "jump" of f on $\partial \Omega$:

$$
[f]_{\partial \Omega}(x)=f_{+}(x)-f_{-}(x)=\lim _{\mathbb{R}^{n} \backslash \bar{\Omega} \ni x^{\prime} \longrightarrow x} f\left(x^{\prime}\right)-\lim _{\Omega \ni x^{\prime} \longrightarrow x} f\left(x^{\prime}\right), x \in \partial \Omega .
$$

We point out here that if μ is a continuous function on a compact hypersurface $\Gamma \subset \mathbb{R}^{n}$, then the distribution $\mu \delta_{\Gamma}$ defined by

$$
\left\langle\mu \delta_{\Gamma}, \varphi\right\rangle=\int_{\Gamma} \mu \varphi d S, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

is called the simple potential on the hypersurface Γ with density μ.
For $k=1,2, \ldots, n$, consider the distribution $[f]_{\partial \Omega}\left(e_{k}, \vec{n}\right) \delta_{\partial \Omega} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ defined by

$$
\left\langle[f]_{\partial \Omega}\left(e_{k}, \vec{n}\right) \delta_{\partial \Omega}, \varphi\right\rangle=\int_{\partial \Omega}[f]_{\partial \Omega}\left(e_{k}, \vec{n}\right) \varphi d S, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

Let us prove the formula for the partial derivative of f in the sense of distributions:

$$
\begin{equation*}
\frac{\partial f}{\partial x_{k}}=T_{\frac{\partial f}{\partial x_{k}}}+[f]_{\partial \Omega}\left(e_{k}, \vec{n}\right) \delta_{\partial \Omega}, \tag{6}
\end{equation*}
$$

where $\frac{\partial f}{\partial x_{k}} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$. We have

$$
\left\langle\frac{\partial f}{\partial x_{k}}, \varphi\right\rangle=-\left\langle f, \frac{\partial \varphi}{\partial x_{k}}\right\rangle=-\int_{\mathbb{R}^{n}} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x .
$$

We decompose

$$
\int_{\mathbb{R}^{n}} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x=\int_{\Omega} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x+\int_{\mathbb{R}^{n} \backslash \Omega} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x
$$

and apply to every integral on the right the integration by parts formula. Then

$$
\int_{\Omega} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x=-\int_{\Omega} \varphi(x) \frac{\partial f(x)}{\partial x_{k}} d x+\int_{\partial \Omega} f_{-}(x) \varphi(x)\left(e_{k}, \vec{n}\right) d S,
$$

and

$$
\int_{\mathbb{R}^{n} \backslash \Omega} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x=-\int_{\mathbb{R}^{n} \backslash \Omega} \varphi(x) \frac{\partial f(x)}{\partial x_{k}} d x-\int_{\partial \Omega} f_{+}(x) \varphi(x)\left(e_{k}, \vec{n}\right) d S
$$

(the minus sign before the last integral appears because \vec{n} is the exterior normal for Ω and so it is the interior normal for $\left.\mathbb{R}^{n} \backslash \Omega\right)$. Therefore,

$$
\int_{\mathbb{R}^{n}} f(x) \frac{\partial \varphi(x)}{\partial x_{k}} d x=-\int_{\mathbb{R}^{n}} \varphi(x) \frac{\partial f(x)}{\partial x_{k}} d x-\int_{\partial \Omega}[f]_{\partial \Omega}(x)\left(e_{k}, \vec{n}\right) \varphi(x) d S,
$$

and

$$
\left\langle\frac{\partial f}{\partial x_{k}}, \varphi\right\rangle=-\int_{\mathbb{R}^{n}} \varphi(x) \frac{\partial f(x)}{\partial x_{k}} d x+\int_{\partial \Omega}[f]_{\partial \Omega}(x)\left(e_{k}, \vec{n}\right) \varphi(x) d S,
$$

which proves (6).
12.2. Laplace operator. In this section we construct a fundamental solution of the Laplace operator

$$
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}}
$$

(a) First we suppose that $n=2$ and prove that

$$
\begin{equation*}
\Delta \ln |x|=\frac{\partial^{2} \ln |x|}{\partial x_{1}^{2}}+\frac{\partial^{2} \ln |x|}{\partial x_{2}^{2}}=2 \pi \delta(x), \quad x \in \mathbb{R}^{2} \tag{7}
\end{equation*}
$$

First of all observe that the function $\ln |x|$ is of class $L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ (to see this it suffices to pass to the polar coordinates) and so it can be viewed as a distribution. Let $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$. Since $\operatorname{supp} \varphi$ is a compact set, there exists $R>0$ such that $\varphi(x)=0$ for $|x| \geq R / 2$. We have

$$
\langle\Delta \ln | x|, \varphi\rangle=\langle\ln | x|, \Delta \varphi\rangle=\int_{\mathbb{R}^{2}} \ln |x| \Delta \varphi(x) d x=\int_{|x| \leq R} \ln |x| \Delta \varphi(x) d x
$$

Denote by $A(\varepsilon, R)=\{x: \varepsilon<|x|<R\}$ the annulus, where $\varepsilon>0$ is small enough. Then by the Lebesgue convergence theorem,

$$
\int_{|x| \leq R} \ln |x| \Delta \varphi(x) d x=\lim _{\varepsilon \longrightarrow 0+} \int_{A(\varepsilon, R)} \ln |x| \Delta \varphi(x) d x .
$$

By the Green formula we have

$$
\int_{A(\varepsilon, R)} \ln |x| \Delta \varphi(x) d x=\int_{A(\varepsilon, R)} \Delta \ln |x| \varphi(x) d x+\int_{\partial A(\varepsilon, R)}\left(\ln |x| \frac{\partial \varphi(x)}{\partial \vec{n}}-\varphi \frac{\partial \ln |x|}{\partial \vec{n}}\right) d S
$$

An elementary computation (say, in the polar coordinates) shows that $\Delta \ln |x|=0$ for $x \neq 0$ so the first integral on the right vanishes. Furthermore, $\partial A(\varepsilon, R)=C_{\varepsilon} \cup C_{R}$, where $C_{r}=\{x:|x|=r\}$ so that $\int_{\partial A(\varepsilon, R)}=\int_{C_{\varepsilon}}+\int_{C_{R}}$. By the choice of R we have $\varphi(x)=\frac{\varphi(x)}{\partial \vec{n}}=0$ for $x \in C_{R}$. Thus,

$$
\int_{A(\varepsilon, R)} \ln |x| \Delta \varphi(x) d x=\int_{C_{\varepsilon}}\left(\ln |x| \frac{\partial \varphi(x)}{\partial \vec{n}}-\varphi \frac{\partial \ln |x|}{\partial \vec{n}}\right) d S .
$$

Since \vec{n} is the vector of the unit exterior normal to $A(\varepsilon, R)$, for every $x \in C_{\varepsilon}$ we have $\vec{n}=-x /|x|$, and so

$$
\frac{\partial}{\partial \vec{n}}=-\frac{\partial}{\partial \vec{x}_{1}} \frac{x_{1}}{|x|}-\frac{\partial}{\partial \vec{x}_{2}} \frac{x_{2}}{|x|} .
$$

Then,

$$
\left|\int_{C_{\varepsilon}} \ln \right| x\left|\frac{\partial \varphi(x)}{\partial \vec{n}} d S\right| \leq \text { const } \cdot \varepsilon|\ln \varepsilon| \longrightarrow 0, \varepsilon \longrightarrow 0
$$

Finally, $\frac{\partial \ln |x|}{\partial \vec{n}}=-\frac{1}{|x|}$ so that

$$
-\int_{C_{\varepsilon}} \varphi \frac{\partial \ln |x|}{\partial \vec{n}} d S=\frac{1}{\varepsilon} \int_{C_{\varepsilon}} \varphi d S .
$$

But we have

$$
\lim _{\varepsilon \longrightarrow 0} \frac{1}{\varepsilon} \int_{C_{\varepsilon}} \varphi(x) d S=\left(\lim _{\varepsilon \longrightarrow 0} \frac{1}{\varepsilon} \int_{C_{\varepsilon}}(\varphi(x)-\varphi(0)) d S\right)+2 \pi \varphi(0)=2 \pi \varphi(0)
$$

Thus,

$$
\int_{\mathbb{R}^{2}} \ln |x| \Delta \varphi(x) d x=2 \pi \varphi(0)
$$

which proves (7).
(b) Now we show that

$$
\begin{equation*}
\Delta \frac{1}{|x|^{n-2}}=-(n-2) S_{n} \delta(x), \quad n \geq 3 \tag{8}
\end{equation*}
$$

where the constant S_{n} is equal to the surface area of the unit sphere in \mathbb{R}^{n}. The proof is quite similar to part (a). We use the notation $r=r(x)=|x|$. For a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ of class C^{2} we have

$$
\begin{gathered}
\frac{\partial}{\partial x_{j}} f(r)=f^{\prime}(r) \frac{x_{j}}{r} \\
\frac{\partial^{2}}{\partial x_{j}^{2}} f(r)=f^{\prime \prime}(r) \frac{x_{j}^{2}}{r^{2}}+f^{\prime}(r) \frac{r^{2}-x_{j}^{2}}{r^{2}} \\
\Delta f(r)=f^{\prime \prime}(r)+f^{\prime}(r) \frac{n-1}{r}
\end{gathered}
$$

Setting $f(r)=r^{p}$, we obtain

$$
\Delta r^{p}=p(p+n-2) r^{p-2}
$$

Therefore, $\Delta r^{2-n}=0$ on $\mathbb{R}^{n} \backslash\{0\}$. Also note that the function $x \mapsto r^{2-n}$ is in $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$.
We have, for sufficiently large $R>0$, that

$$
\left\langle\Delta r^{2-n}, \varphi\right\rangle=\left\langle r^{2-n}, \Delta \varphi\right\rangle=\int_{\mathbb{R}^{n}} r^{2-n} \Delta \varphi(x)=\int_{|x| \leq R} r^{2-n} \Delta \varphi(x) d x
$$

and

$$
\int_{|x| \leq R} r^{2-n} \Delta \varphi(x) d x=\lim _{\varepsilon \longrightarrow 0+} \int_{A(\varepsilon, R)} r^{2-n} \Delta \varphi(x) d x
$$

Again, by the Green formula we have

$$
\int_{A(\varepsilon, R)} r^{2-n} \Delta \varphi(x) d x=\int_{A(\varepsilon, R)} \Delta r^{2-n} \varphi(x) d x+\int_{\partial A(\varepsilon, R)}\left(r^{2-n} \frac{\partial \varphi(x)}{\partial \vec{n}}-\varphi \frac{\partial r^{2-n}}{\partial \vec{n}}\right) d S .
$$

The first integral on the right vanishes and by the choice of R we have $\varphi(x)=\frac{\varphi(x)}{\partial \vec{n}}=0$ for $x \in C_{R}$. Thus,

$$
\int_{A(\varepsilon, R)} r^{2-n} \Delta \varphi(x) d x=\int_{C_{\varepsilon}}\left(r^{2-n} \frac{\partial \varphi(x)}{\partial \vec{n}}-\varphi \frac{\partial r^{2-n}}{\partial \vec{n}}\right) d S .
$$

Since \vec{n} is the vector of the unit exterior normal to $A(\varepsilon, R)$, for every $x \in C_{\varepsilon}$ we have $\vec{n}=-x /|x|$ and

$$
\frac{\partial}{\partial \vec{n}}=-\frac{\partial}{\partial \vec{x}_{1}} \frac{x_{1}}{|x|}-\cdots-\frac{\partial}{\partial \vec{x}_{n}} \frac{x_{n}}{|x|} .
$$

Then,

$$
\left|\int_{C_{\varepsilon}} r^{2-n} \frac{\partial \varphi(x)}{\partial \vec{n}} d S\right| \leq \text { const } \cdot \varepsilon \longrightarrow 0, \quad \varepsilon \rightarrow 0
$$

Finally, $\frac{\partial r^{2-n}}{\partial \vec{n}}=(n-2) r^{1-n}$, so that

$$
-\int_{C_{\varepsilon}} \varphi \frac{\partial r^{2-n}}{\partial \vec{n}} d S=-(n-2) \frac{1}{\varepsilon^{n-1}} \int_{C_{\varepsilon}} \varphi d S
$$

Then

$$
\begin{aligned}
& -(n-2) \lim _{\varepsilon \longrightarrow 0} \frac{1}{\varepsilon^{n-1}} \int_{C_{\varepsilon}} \varphi(x) d S=-(n-2)\left(\lim _{\varepsilon \longrightarrow 0} \frac{1}{\varepsilon^{n-1}} \int_{C_{\varepsilon}}(\varphi(x)-\varphi(0)) d S\right) \\
& -(n-2) S_{n} \varphi(0)=-(n-2) S_{n} \varphi(0),
\end{aligned}
$$

which proves (8).
If $n=3$, then $S_{3}=4 \pi$ so that

$$
\Delta \frac{1}{r}=-4 \pi \delta(x), \quad x \in \mathbb{R}^{3}
$$

12.3. Heat Equation. Consider the function

$$
E(x, t)=\frac{\theta(t)}{(2 a \sqrt{\pi t})^{n}} e^{-\frac{|x|^{2}}{4 a^{2} t}},
$$

where the function θ is the Heaviside function on \mathbb{R}. The function E is locally integrable in \mathbb{R}^{n+1}. Indeed, $E(x, t)=0$ if $t<0$ and $E(x, t)$ is positive for $t \geq 0$. Furhermore, E is continuous (and vanishes) on the hyperplane $\{(x, t): t=0\}$. Consider a bouded set of \mathbb{R}^{n+1} of the form $B(0, R) \times[0, R]$, where $B(0, R)=\left\{x \in \mathbb{R}^{n}:|x| \leq R\right\}$. By Fubini's theorem we have

$$
\int_{B(0, R) \times[0, R]} E(x, t) d x d t=\int_{[0, R]}\left(\int_{B(0, R)} E(x, t) d x\right) d t \leq \int_{[0, R]}\left(\int_{\mathbb{R}^{n}} E(x, t) d x\right) d t .
$$

After the change of coordinates $x / 2 a \sqrt{t}=y$ we have

$$
\int_{\mathbb{R}^{n}} E(x, t) d x=\int_{\mathbb{R}^{n}} \frac{1}{(2 a \sqrt{\pi t})^{n}} e^{-\frac{|x|^{2}}{4 a^{2} t}} d x=\frac{1}{(\sqrt{\pi})^{n}} \prod_{j=1}^{n} \int_{\mathbb{R}} e^{-y_{j}^{2}} d y_{j}=1 .
$$

Thus,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} E(x, t) d x=1 \tag{9}
\end{equation*}
$$

and so

$$
\int_{[0, R]}\left(\int_{\mathbb{R}^{n}} E(x, t) d x\right) d t \leq \int_{[0, R]} d t=R .
$$

This proves the local integrability of $E(x, t)$.
Let us prove the following identity:

$$
\begin{equation*}
\frac{\partial E}{\partial t}-a^{2} \Delta E=\delta(x, t) \tag{10}
\end{equation*}
$$

We first observe that for $t>0$ the function E is of class C^{∞}, and by an elementary computation, which is left for the reader, we have

$$
\begin{equation*}
\frac{\partial E}{\partial t}(x, t)-a^{2} \Delta E=0, t>0 \tag{11}
\end{equation*}
$$

Here the derivatives are taken in the usual sense. Now let $\varphi \in \mathcal{D}\left(\mathbb{R}^{n+1}\right)$. Then

$$
\left\langle\frac{\partial E}{\partial t}-a^{2} \Delta E, \varphi\right\rangle=-\left\langle E, \frac{\partial \varphi}{\partial t}+a^{2} \Delta \varphi\right\rangle=-\int_{0}^{\infty}\left(\int_{\mathbb{R}^{n}} E(x, t)\left(\frac{\partial \varphi}{\partial t}+a^{2} \Delta \varphi\right) d x\right) d t .
$$

By the Lebesgue convergence theorem we have

$$
-\int_{0}^{\infty}\left(\int_{\mathbb{R}^{n}} E(x, t)\left(\frac{\partial \varphi}{\partial t}+a^{2} \Delta \varphi\right) d x\right) d t=-\lim _{\varepsilon \longrightarrow 0} \int_{\varepsilon}^{\infty}\left(\int_{\mathbb{R}^{n}} E(x, t)\left(\frac{\partial \varphi}{\partial t}+a^{2} \Delta \varphi\right) d x\right) d t
$$

Since $\operatorname{supp} \phi$ is compact, the integration by parts yields

$$
-\int_{\varepsilon}^{\infty}\left(\int_{\mathbb{R}^{n}} E(x, t) \frac{\partial \varphi}{\partial t} d x\right) d t=\int_{\mathbb{R}^{n}} E(x, \varepsilon) \varphi(x, \varepsilon) d x+\int_{\varepsilon}^{\infty}\left(\int_{\mathbb{R}^{n}} \frac{\partial E}{\partial t} \varphi d x\right) d t .
$$

Fix $R>0$ such that $\varphi(x, t)=0$ for $|x| \geq R / 2$. Green's formula implies

$$
\int_{\mathbb{R}^{n}} E(x, t) \Delta \varphi(x, t) d x=\int_{|x| \leq R} E(x, t) \Delta \varphi(x, t) d x=\int_{\mathbb{R}^{n}}(\Delta E(x, t)) \varphi(x, t) d x
$$

since

$$
\int_{|x|=R}\left(E \frac{\partial \varphi}{\partial \vec{n}}-\varphi \frac{\partial E}{\partial \vec{n}}\right) d x=0
$$

in view of the choice of R. Thus,

$$
\begin{aligned}
& -\lim _{\varepsilon \longrightarrow 0} \int_{\varepsilon}^{\infty}\left(\int_{\mathbb{R}^{n}} E(x, t)\left(\frac{\partial \varphi}{\partial t}+a^{2} \Delta \varphi\right) d x\right) d t=\lim _{\varepsilon \longrightarrow 0}\left(\int E(x, \varepsilon) \varphi(x, \varepsilon) d x\right. \\
& \left.+\int_{\varepsilon}^{\infty}\left(\int_{\mathbb{R}^{n}}\left(\frac{\partial E}{\partial t}-a^{2} \Delta E\right) \varphi d x\right) d t\right)=\lim _{\varepsilon \longrightarrow 0}\left(\int E(x, \varepsilon) \varphi(x, \varepsilon) d x\right)
\end{aligned}
$$

where the last equality follows by (11). We need the following
Claim 1. One has

$$
\lim _{\varepsilon \longrightarrow 0} \int E(x, \varepsilon)[\varphi(x, \varepsilon)-\varphi(x, 0)] d x \longrightarrow 0
$$

For the proof, fix $R>0$ such that $\operatorname{supp} \phi \subset\{|(\mathrm{x}, \mathrm{t})|<\mathrm{R}\}$. The function ϕ is Lipschitz continuous and hence, uniformly continuous on \mathbb{R}^{n+1}. Given $\alpha>0$ there exists $\delta>0$ such that $\mid \phi(x, \varepsilon)-$ $\phi(x, 0) \mid<\alpha / 2$ for all $x \in \mathbb{R}^{n}$. Therefore,

$$
\int E(x, \varepsilon)[\varphi(x, \varepsilon)-\varphi(x, 0)] d x=I+I I
$$

with

$$
I=\int_{|x|<\delta} E(x, \varepsilon)[\varphi(x, \varepsilon)-\varphi(x, 0)] d x
$$

and

$$
I I=\int_{\delta \leq|x| \leq R} E(x, \varepsilon)[\varphi(x, \varepsilon)-\varphi(x, 0)] d x
$$

Then

$$
|I| \leq(\alpha / 2) \int_{\mathbb{R}^{n}} E(x, \varepsilon) d x=\alpha / 2
$$

Set

$$
M(\varepsilon)=\frac{1}{(2 a \sqrt{\pi \varepsilon})^{n}} e^{-\frac{|\delta|^{2}}{4 a^{2} \varepsilon}},
$$

and $C=\sup _{x \in \mathbb{R}^{n}}|\phi(x)|$. Then $\sup _{|x| \geq \delta} E(x, \varepsilon)=M(\varepsilon)$ and

$$
|I I| \leq 2 C \int_{\delta \leq|x| \leq R} E(x, \varepsilon) d x \leq 4 C M(\varepsilon) R \rightarrow 0, \quad \varepsilon \rightarrow 0
$$

It follows that $|I I| \leq \alpha / 2$ for all ε small enough. This proves the claim.
We conclude that

$$
\lim _{\varepsilon \longrightarrow 0} \int E(x, \varepsilon) \varphi(x, \varepsilon) d x=\lim _{\varepsilon \longrightarrow 0}\left(\int E(x, \varepsilon) \varphi(x, 0) d x\right.
$$

To finish the proof we need the following

Claim 2. The following holds in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$:

$$
\lim _{t \longrightarrow 0+} E(x, t)=\delta(x) .
$$

For the proof, let $\psi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Since ψ has a compact support, there exists a constant $C>0$ such that

$$
|\psi(x)-\psi(0)| \leq C|x|, x \in \mathbb{R}^{n} .
$$

We have

$$
\left|\int_{\mathbb{R}^{n}} E(x, t)(\psi(x)-\psi(0)) d x\right| \leq \frac{C}{\left(4 \pi a^{2} t\right)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4 a^{2} t}}|x| d x .
$$

Evaluating the last integral in the spherical coordinates (we denote by σ_{n} the surface of the unit sphere in \mathbb{R}^{n}) we obtain that the last integral is equal to

$$
\frac{C \sigma_{n}}{\left(4 \pi a^{2} t\right)^{n / 2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{4 a^{2} t} t} r^{n} d r=\frac{2 C \sigma_{n} \sqrt{t a}}{\pi^{n / 2}} \int_{0}^{\infty} e^{-u^{2}} u^{n} d u=C^{\prime} \sqrt{t}
$$

Hence,

$$
\left|\int_{\mathbb{R}^{n}} E(x, t)(\psi(x)-\psi(0)) d x\right| \longrightarrow 0, \text { as } t \longrightarrow 0+
$$

Then, using (9), we have

$$
\begin{aligned}
& \langle E(x, t), \psi\rangle=\int_{\mathbb{R}^{n}} E(x, t) \psi(x) d x=\psi(0) \int E(x, t) d x+\int E(x, t)(\psi(x)-\psi(0)) d x \\
& \longrightarrow \psi(0)=\langle\delta(x), \psi\rangle .
\end{aligned}
$$

This proves the claim.
Let $\psi(x)=\varphi(x, 0) \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Then

$$
\left\langle\frac{\partial E}{\partial t}-a^{2} \Delta E, \varphi\right\rangle=\lim _{\varepsilon \longrightarrow 0}\left(\int E(x, \varepsilon) \varphi(x, 0) d x\right)=\varphi(0)=\langle\delta(x, t), \varphi\rangle .
$$

This concludes the proof of (10).

