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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

12. FUNDAMENTAL SOLUTIONS OF CLASSICAL OPERATORS.

12.1. More advanced examples. Here we consider examples concerning distributions in R",
o)

n > 1. One of the most important examples is given by the Cauchy-Riemann operator 5 =
% (8% + i%) on the complex plane C = R? with the coordinate z = x + iy. This is a differential
operator with constant coefficients of order one.

First of all we adapt the integration by parts (formula (12) in Section 5.2) to the complex
notation. Let  be a bounded domain with C' boundary in C and f be a complex function of
class C(©Q). We suppose that (a connected component of) 9 is positively parametrized by the

map [a,b] >t~ z(t) +y(t) of class C*. Then
L W)
V(@ ()2 + (/1)

is the vector field of the unit outward normal. Then, from the definition of the surface integral (see
Section 5.1) and using the notation dz = dx + idy, we have

NGOG TE /f W/ —ia' )t = i | f)a:

Keeping this in mind, we pass to the integration by parts with the Cauchy-Riemann operator. For
two complex-valued functions u,v € C*(Q) we have

ou 1 . ov
/azvdajdy /vd dy + = /ayvda:dy— 3 (/BQ uv(n,eﬁdS—/uda;dy)
+2 </ uv (7, e2)dS — / dwdy) 1/ wo[(71, e1) + i(7, e2)]dS — / dxdy
2 \Joa 2 Joq
—1

= — uwvdz — / dacdy
o0

Thus we obtain the following useful integration by parts formula:

(1) / Tvdwdy = — uvdz — / dxdy
0z o0
Lemma 12.1. The function % is the fundamental solution of the operator %, i.e.,
J1
2 0 .
) & = ()

Proof. First note that % € L} .(R?) (use the polar coordinates to verify this), and so % defines a

regular distribution. Let ¢ € D(R?) be a (complex-valued) test function with supp C B(0,R).
1



2 RASUL SHAFIKOV
For ¢ > O denote by A(e, R) the annulus B(0, R)\B(0,¢). Denote also by C. the circle {|z| = }.

Then =- =0on A(e, R) and using (1) with u = ¢ and v = 1/z we have
1 1 1 ]
(= 0 w)=—(- 84,0> = — lim agpdxdy = lim —Z/ L
0z 2’ 2’ 0z e—0+ Jo_ 2z 0Z e—0+ 2 Jo 2

Here the integral over the circle C is taken with positive orientation with respect to the disc B(0, ¢).

Writing
/ L :/ #(2) —(0) SO(O)d,zﬂo(O) .
z

z C. z

we easily see that the first integral tends to 0 (use Taylor’s formula) and the second one tends to
27mip(0). Hence,

which concludes the proof. ([l

Using Lemma 12.1 we can easily deduce an integral representation involving the Cauchy-Riemann
operator. Fix z € . Denote by Q. the domain Q\B(z,¢) and by C(z,¢) the circle {C : [( —z| = €}.
Let a complex function f be of class C1(2). We set ¢ = & + in. Then, using (1) and (2), we have

1[ofQ) 1 . 8f(<>;
Tr/Q o (—=z dedn _51—1>I%+/QE o ¢—

I N ((S D Y SR (S DA W B (S I
- 7r€1_>0+< 2 /89C_ng+2/0(z,€)g_zdc> 2 /HQC_de f(Z)

Thus we obtained the so-called Cauchy-Green formula

1 97(() 1
3) f(Z)—m/mc_de W/Q e

= 0 in €2, we have the classical Cauchy integral formula

In particular, if f is holomorphic, i.e., 8’;—%)

1 f©)
21 o0 C —Z

It is also easy to deduce now the Cauchy theorem. Let D be a domain in C and v be a closed
simple path in D homotopic to 0. If f is a holomorphic function in D, then

(5) / f(2)dz =

Indeed, consider the domain €2 C D bounded by ~. Since 7 is homotopic to 0, the boundary 92 of
Q coincides with « (with suitable orientation). Fix z € Q. By the Cauchy formula we have

[ st = [ €2 ac— [Hac - [ [Ouc

=2mizf(z) — 2mizf(z ) =

(4) f(z) = dc.

which proves (5).
The next example is a generalization of Example (9.2).
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Example 12.1. Let © be a bounded domain with C! boundary and f € C*(Q) N CY(R™\Q) (in
particular, all discontinuity points of f belong to 92). The usual partial derivative % is defined
and locally integrable on R™\9Q so we can consider the regular distribution 75y € D'(R™). We

oz,
also introduce the “jump” of f on 9€:

[floa(z) = fr(z) = f-(z) = lim  f(@’)— lim f(a’), z €09

R™M\Q32' —x 23z’ —x

We point out here that if 4 is a continuous function on a compact hypersurface I' C R™, then
the distribution udr defined by

<u5r,so>=/rusod3, ¢ € D(R™)

is called the simple potential on the hypersurface I' with density p.
For k =1,2,...,n, consider the distribution [f]sq(ex,)dagn € D'(R™) defined by

(flon (e, 1) So, ) = /8 lon (ex,71) S, € DR,

Let us prove the formula for the partial derivative of f in the sense of distributions:

(6) ;i =Tor + [floa(er, 7)doq,

Tk

where % € D'(R™). We have

2L = —<f,§fk> - —/nf(x)&p(x)dx.

871'167 6.%'k

dp(x) , I (x) Ip(x)
/n f(z) B dac—/ﬂf(a:) D2, da:—i—/Rn\Qf(a:) Oz, dx

and apply to every integral on the right the integration by parts formula. Then

[1@%8 00— [ oD [ 1 @ptw)iermas,
Q Q o0

Oxy, 0wy,

We decompose

and

00(@) 4o x 0/(x) x — x)p(z)(ex, 7
LS == [ @ [ p et e s

(the minus sign before the last integral appears because 7 is the exterior normal for Q and so it is
the interior normal for R™\Q2). Therefore,

[ 1@ e = [ oo~ [ (flane) e mptds,

oxy, Oxy

and

oxy Oxy,

A oy= [ o0 XDt [ (fn@ennoas,

which proves (6). ¢
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12.2. Laplace operator. In this section we construct a fundamental solution of the Laplace op-
erator
0? 0?
=+t
Ox? ox2
(a) First we suppose that n = 2 and prove that

A

9*In|z|  0*In|z|
Ox? ox2

First of all observe that the function In |z| is of class L}

(7) Alnlz| = =276(z), = €R>

L (R?) (to see this it suffices to pass to the
polar coordinates) and so it can be viewed as a distribution. Let ¢ € D(R?). Since supp ¢ is a
compact set, there exists R > 0 such that ¢(x) = 0 for |x| > R/2. We have

(Aln|z|, @) = (In|z|, Ap) :/ In|z|Ap(z)dx :/ In|z|Ap(z)dx.
R? |z|<R

Denote by A(e,R) = {z : € < |z| < R} the annulus, where € > 0 is small enough. Then by the
Lebesgue convergence theorem,

/ In |z|Ap(x)dz = lim In |z|Ap(z)dz.
je|<R =0t J A R)

By the Green formula we have

/ In |z|Ap(x)dx = / Aln |z|p(z)dx +/ <ln up@@) B (palnlx|> is.
Ale.R) A(e,R) DA(e,R) ot o

An elementary computation (say, in the polar coordinates) shows that Aln|z| = 0 for = # 0 so the
first integral on the right vanishes. Furthermore, 0A(e, R) = C; U Cg, where C, = {x : |z| = r} so

that faA(a,R) = Jc. —|—fCR. By the choice of R we have ¢(z) = %(;) =0 for x € Cg. Thus,

Op(x) 81n]m|>
In|z|A a:dx:/ <1n:c — — — ds.
[ eiae = [ (g 75 o7

Since 1 is the vector of the unit exterior normal to A(e, R), for every x € C. we have 7 = —x/|z|,
and so

0 . 0 I 15) i)

o Ofy|x| 0% x|
Then,

on

Oln |z 1
- ds =~ [ ds.
/Cf’ o e/cf’s

lim ~ [ p(@)ds = (hm ! /C (o) — (p(O))dS) + 2m(0) = 270(0).

e—0 € C. e—0 ¢

/ In ]x|8(’0(x) dS‘ < const-¢|lnel — 0, e — 0.

Finally, 8glﬁ|x| = — 4 5o that

||

But we have

Thus,
/ In|z|Ap(z)dr = 2mp(0),
R2

which proves (7).
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(b) Now we show that

1
|x|n72

(8)

where the constant 5, is equal to the surface area of the unit sphere in R™. The proof is quite
similar to part (a). We use the notation r = r(x) = |x|. For a function f : R — R of class C? we
have

=—(n—2)S,6(x), n >3,

n—1

Setting f(r) = rP, we obtain
ArP = p(p +n — 2)rP2.

Therefore, Ar?~" =0 on R™\{0}. Also note that the function z — r?~" is in L} (R").
We have, for sufficiently large R > 0, that

@A) = (20 Ag) = [ P Ap() = /| B,

and

/ 2" Ap(x)dr = lim 2" Ap(x)dz.
lz|<R e—0+ J A(e,R)

Again, by the Green formula we have

2—n
/ r2 " Ap(x)dz :/ Ar?"p(z )daz+/ < 2= ”ag(_,) - cpag_, >d5’.
A(e,R) A(e,R) dA(e,R) n

The first integral on the right vanishes and by the choice of R we have p(x) = ‘pa(;? =0 for z € Cg.

Thus,
_ dp(x)  ar*™"
r2 A mdx:/ <2” — — | dS.
/A(E,R) #() a on ¥ o

Since 7 is the vector of the unit exterior normal to A(e, R), for every = € C. we have i = —z/|z]|
and

o 0 m 0

ofn  OF x| O |a]
Then,

on

/ 2-n 0P )dS‘<const e—0, ¢—=0.

Finally, 8ﬂn (n —2)r'=", so that

ortn 1
—/C;p o7 dS—(n—2)€n_1/Cag0dS.
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Then

~n=2) Jim [ pte)ds = ~(n-2) (tim, o [ (ole) - o0
(1= 2)8,(0) = ~(n — 2)S,2(0).

which proves (8).
If n = 3, then S3 = 47 so that

1
A= = —4nd(z), = € R
T

12.3. Heat Equation. Consider the function

_ oy e
Ba,t) = o e,

where the function @ is the Heaviside function on R. The function E is locally integrable in R™*!,
Indeed, E(z,t) = 0 if t < 0 and E(xz,t) is positive for ¢ > 0. Furhermore, E is continuous
(and vanishes) on the hyperplane {(x,t) : t = 0}. Consider a bouded set of R"*! of the form
B(0, R) x [0, R], where B(0,R) = {z € R" : |z| < R}. By Fubini’s theorem we have

/ E(z,t)dzdt = / (/ E(x,t)dm) dt < / ( E(x,t)dac) dt.
B(0,R)x[0,R] 0,r] \/B(0,R) (0,7 \JRr"

After the change of coordinates z/2av/t = y we have

1 || 1 n 9
E(x,t dl':/ — ¢ 4aZidr = ——— /e_yjdy.:]“
S ST v L
Thus,

9) E(x,t)de =1,
Rn

/ ( E(:r,t)d:c) dt < / dt = R.
[0,R] \/R" [0,R]

This proves the local integrability of E(x,t).
Let us prove the following identity:

(10) 88—? — a’AE = §(x,t).

We first observe that for ¢ > 0 the function F is of class C'°*°, and by an elementary computation,
which is left for the reader, we have

and so

OF
Here the derivatives are taken in the usual sense. Now let » € D(R"*1). Then

OFE o) o o)
<§ —a?AE,¢) = —(E, ai: + a?Ag) = _/0 ( X E(z,t) <af + a2A<p> daz) dt.

By the Lebesgue convergence theorem we have

—/ < E(z,t) <3<,0 + a2Ag0> d:c> dt = — lim < E(z,t) (880 + a2Ag0> d:v) dt.
0 R™ ot e—0 /. R ot
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Since supp ¢ is compact, the integration by parts yields

0 > E
—/ < E(;U,t)&de> dt = E(x,e)p(x,e)dx +/ ( acpd:n) dt.
€ R at R £ R (9t

Fix R > 0 such that ¢(x,t) =0 for |x| > R/2. Green’s formula implies

E(:c,t)Anp(a?,t)da?:/ E(a:,t)Ago(:C,t)d:c:/ (AE(z,t))p(x, t)dx,

‘x|§R n

oy oF B
/|a::R (E8ﬁ - SOaﬁ) =0

in view of the choice of R. Thus,

— lim ( E(x,t) <08f + a2Acp> daz) dt = lim (/ E(z,e)p(x,e)dr
R

e—0 J, e—0

«/ N ( |G- mE)sodx) dt) = lim, ( / E(x,e)<p(x,5)dac> ,

where the last equality follows by (11). We need the following
Claim 1. One has

Rn
since

lim [ E(z,¢)[p(x,e) — p(x,0)]dz — 0.

e—0

For the proof, fix R > 0 such that supp ¢ C {|(x,t)] < R}. The function ¢ is Lipschitz continuous
and hence, uniformly continuous on R"*!. Given o > 0 there exists § > 0 such that |¢(z,e) —
¢(z,0)| < /2 for all z € R™. Therefore,

/ Bz, 2)o(z,¢) — p(z, 0)]de = I + I1,

with
I= 2l <s E(xag)[QO(SU’g) - 90($,0)]da:,
and
II = / E(z,e)[p(x,e) — p(z,0)]dx.
o<|z|<R
Then
11| < (a/2) /R" E(z,e)dx = a/2.
Set
M(e) = ¥6_%
Cavrey®

and C = sup,cgn |¢(x)|. Then supp, 5 E(z,e) = M(e) and
11| < 2C E(x,e)dz < ACM ()R — 0, & — 0.
o<|z|<R
It follows that |II| < «/2 for all £ small enough. This proves the claim.
We conclude that

e—0

lim [ E(z,e)p(z,e)dx = Eli_r>n0(/E(x,5)cp(:E, 0)dz.

To finish the proof we need the following
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Claim 2. The following holds in D'(R™):
lim E(x,t) =d(x).

t—0+

For the proof, let ¢ € D(R™). Since ¥ has a compact support, there exists a constant C' > 0
such that
() = ¥(0)] < Clal,z € R”,
We have

C =
[ B - v < o | e alaa.

Evaluating the last integral in the spherical coordinates (we denote by o,, the surface of the unit
sphere in R™) we obtain that the last integral is equal to

Coy, o r2 200, \Vta [
n/2 0

—_— e 2Zir'dr =
(4wa?t) /2 0

e~ undy, = C'Vt.

Hence,

[ B0 - )

— 0, ast — 0+.

Then, using (9), we have

(Bla.t).0) = [ Batpads = v(0) [ Be.ods+ [ B0 - o0)ds

— P(0) = (0(2), ¥).
This proves the claim.
Let ¢(z) = ¢(z,0) € D(R™). Then
<a;f — a?AE, ) = lim </ E(a:,s)cp(x,O)dx) =¢(0) = (6(x,t), p).

e—0

This concludes the proof of (10).



