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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

12. Fundamental solutions of classical operators.

12.1. More advanced examples. Here we consider examples concerning distributions in Rn,
n > 1. One of the most important examples is given by the Cauchy-Riemann operator ∂

∂z =
1
2

(
∂
∂x + i ∂∂y

)
on the complex plane C ∼= R2 with the coordinate z = x + iy. This is a differential

operator with constant coefficients of order one.
First of all we adapt the integration by parts (formula (12) in Section 5.2) to the complex

notation. Let Ω be a bounded domain with C1 boundary in C and f be a complex function of
class C(Ω). We suppose that (a connected component of) ∂Ω is positively parametrized by the
map [a, b] 3 t 7→ x(t) + iy(t) of class C1. Then

~n =
(y′(t),−x′(t))√

(x′(t))2 + (y′(t))2

is the vector field of the unit outward normal. Then, from the definition of the surface integral (see
Section 5.1) and using the notation dz = dx+ idy, we have∫

∂Ω
f [(~n,~e1) + i(~n,~e2)]dS =

∫ b

a
f(x(t), y(t))(y′(t)− ix′(t))dt = −i

∫
∂Ω
f(z)dz.

Keeping this in mind, we pass to the integration by parts with the Cauchy-Riemann operator. For
two complex-valued functions u, v ∈ C1(Ω) we have∫

Ω

∂u

∂z
vdxdy =

1

2

∫
Ω

∂u

∂x
vdxdy +

i

2

∫
Ω

∂u

∂y
vdxdy =

1

2

(∫
∂Ω
uv(~n, e1)dS −

∫
Ω
u
∂v

∂x
dxdy

)
+
i

2

(∫
∂Ω
uv(~n, e2)dS −

∫
Ω
u
∂v

∂y
dxdy

)
=

1

2

∫
∂Ω
uv[(~n, e1) + i(~n, e2)]dS −

∫
Ω
u
∂v

∂z
dxdy

=
−i
2

∫
∂Ω
uvdz −

∫
Ω
u
∂v

∂z
dxdy.

Thus we obtain the following useful integration by parts formula:∫
Ω

∂u

∂z
vdxdy =

−i
2

∫
∂Ω
uvdz −

∫
Ω
u
∂v

∂z
dxdy.(1)

Lemma 12.1. The function 1
πz is the fundamental solution of the operator ∂

∂z̄ , i.e.,

(2)
∂

∂z

1

z
= πδ(x, y).

Proof. First note that 1
z ∈ L

1
loc(R2) (use the polar coordinates to verify this), and so 1

z defines a

regular distribution. Let ϕ ∈ D(R2) be a (complex-valued) test function with suppϕ ⊂ B(0,R).
1
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For ε > 0 denote by A(ε,R) the annulus B(0, R)\B(0, ε). Denote also by Cε the circle {|z| = ε}.
Then ∂

∂z
1
z = 0 on A(ε,R) and using (1) with u = φ and v = 1/z we have

〈 ∂
∂z

1

z
, ϕ〉 = −〈1

z
,
∂ϕ

∂z
〉 = − lim

ε−→0+

∫
Ωε

1

z

∂ϕ

∂z
dxdy = lim

ε−→0+
− i

2

∫
Cε

ϕ

z
dz.

Here the integral over the circle Cε is taken with positive orientation with respect to the disc B(0, ε).
Writing ∫

Cε

ϕ

z
dz =

∫
Cε

ϕ(z)− ϕ(0)

z
dz + ϕ(0)

∫
Cε

dz

z
,

we easily see that the first integral tends to 0 (use Taylor’s formula) and the second one tends to
2πiϕ(0). Hence,

lim
ε−→0+

− i
2

∫
Cε

ϕ

z
dz = πϕ(0),

which concludes the proof. �

Using Lemma 12.1 we can easily deduce an integral representation involving the Cauchy-Riemann
operator. Fix z ∈ Ω. Denote by Ωε the domain Ω\B(z, ε) and by C(z, ε) the circle {ζ : |ζ−z| = ε}.
Let a complex function f be of class C1(Ω). We set ζ = ξ + iη. Then, using (1) and (2), we have

1

π

∫
Ω

∂f(ζ)

∂ζ

1

ζ − z
dξdη = lim

ε−→0+

∫
Ωε

∂f(ζ)

∂ζ

1

ζ − z
dξdη

=
1

π
lim

ε−→0+

(
−i
2

∫
∂Ω

f(ζ)

ζ − z
dζ +

i

2

∫
C(z,ε)

f(ζ)

ζ − z
dζ

)
=
−i
2π

∫
∂Ω

f(ζ)

ζ − z
dζ − f(z).

Thus we obtained the so-called Cauchy-Green formula

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ − 1

π

∫
Ω

∂f(ζ)

∂ζ

1

ζ − z
dξdη.(3)

In particular, if f is holomorphic, i.e., ∂f(ζ)

∂ζ
= 0 in Ω, we have the classical Cauchy integral formula

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ.(4)

It is also easy to deduce now the Cauchy theorem. Let D be a domain in C and γ be a closed
simple path in D homotopic to 0. If f is a holomorphic function in D, then∫

γ
f(z)dz = 0.(5)

Indeed, consider the domain Ω ⊂ D bounded by γ. Since γ is homotopic to 0, the boundary ∂Ω of
Ω coincides with γ (with suitable orientation). Fix z ∈ Ω. By the Cauchy formula we have∫

γ
f(ζ)dζ =

∫
γ

(ζ − z)f(ζ)

ζ − z
dζ =

∫
γ

ζf(ζ)

ζ − z
dζ − z

∫
γ

f(ζ)

ζ − z
dζ

= 2πizf(z)− 2πizf(z) = 0,

which proves (5).
The next example is a generalization of Example (9.2).
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Example 12.1. Let Ω be a bounded domain with C1 boundary and f ∈ C1(Ω) ∩ C1(Rn\Ω) (in

particular, all discontinuity points of f belong to ∂Ω). The usual partial derivative ∂f
∂xk

is defined

and locally integrable on Rn\∂Ω so we can consider the regular distribution T ∂f
∂xk

∈ D′(Rn). We

also introduce the “jump” of f on ∂Ω:

[f ]∂Ω(x) = f+(x)− f−(x) = lim
Rn\Ω3x′−→x

f(x′)− lim
Ω3x′−→x

f(x′), x ∈ ∂Ω.

We point out here that if µ is a continuous function on a compact hypersurface Γ ⊂ Rn, then
the distribution µδΓ defined by

〈µδΓ, ϕ〉 =

∫
Γ
µϕdS, ϕ ∈ D(Rn)

is called the simple potential on the hypersurface Γ with density µ.
For k = 1, 2, . . . , n, consider the distribution [f ]∂Ω(ek, ~n)δ∂Ω ∈ D′(Rn) defined by

〈[f ]∂Ω (ek, ~n) δ∂Ω, ϕ〉 =

∫
∂Ω

[f ]∂Ω (ek, ~n)ϕdS, ϕ ∈ D(Rn).

Let us prove the formula for the partial derivative of f in the sense of distributions:

∂f

∂xk
= T ∂f

∂xk

+ [f ]∂Ω(ek, ~n)δ∂Ω,(6)

where ∂f
∂xk
∈ D′(Rn). We have

〈 ∂f
∂xk

, ϕ〉 = −〈f, ∂ϕ
∂xk
〉 = −

∫
Rn
f(x)

∂ϕ(x)

∂xk
dx.

We decompose ∫
Rn
f(x)

∂ϕ(x)

∂xk
dx =

∫
Ω
f(x)

∂ϕ(x)

∂xk
dx+

∫
Rn\Ω

f(x)
∂ϕ(x)

∂xk
dx

and apply to every integral on the right the integration by parts formula. Then∫
Ω
f(x)

∂ϕ(x)

∂xk
dx = −

∫
Ω
ϕ(x)

∂f(x)

∂xk
dx+

∫
∂Ω
f−(x)ϕ(x)(ek, ~n)dS,

and ∫
Rn\Ω

f(x)
∂ϕ(x)

∂xk
dx = −

∫
Rn\Ω

ϕ(x)
∂f(x)

∂xk
dx−

∫
∂Ω
f+(x)ϕ(x)(ek, ~n)dS

(the minus sign before the last integral appears because ~n is the exterior normal for Ω and so it is
the interior normal for Rn\Ω). Therefore,∫

Rn
f(x)

∂ϕ(x)

∂xk
dx = −

∫
Rn
ϕ(x)

∂f(x)

∂xk
dx−

∫
∂Ω

[f ]∂Ω(x)(ek, ~n)ϕ(x)dS,

and

〈 ∂f
∂xk

, ϕ〉 = −
∫
Rn
ϕ(x)

∂f(x)

∂xk
dx+

∫
∂Ω

[f ]∂Ω(x)(ek, ~n)ϕ(x)dS,

which proves (6). �
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12.2. Laplace operator. In this section we construct a fundamental solution of the Laplace op-
erator

∆ =
∂2

∂x2
1

+ ...+
∂2

∂x2
n

.

(a) First we suppose that n = 2 and prove that

∆ ln |x| = ∂2 ln |x|
∂x2

1

+
∂2 ln |x|
∂x2

2

= 2πδ(x), x ∈ R2.(7)

First of all observe that the function ln |x| is of class L1
loc(R2) (to see this it suffices to pass to the

polar coordinates) and so it can be viewed as a distribution. Let ϕ ∈ D(R2). Since suppϕ is a
compact set, there exists R > 0 such that ϕ(x) = 0 for |x| ≥ R/2. We have

〈∆ ln |x|, ϕ〉 = 〈ln |x|,∆ϕ〉 =

∫
R2

ln |x|∆ϕ(x)dx =

∫
|x|≤R

ln |x|∆ϕ(x)dx.

Denote by A(ε,R) = {x : ε < |x| < R} the annulus, where ε > 0 is small enough. Then by the
Lebesgue convergence theorem,∫

|x|≤R
ln |x|∆ϕ(x)dx = lim

ε−→0+

∫
A(ε,R)

ln |x|∆ϕ(x)dx.

By the Green formula we have∫
A(ε,R)

ln |x|∆ϕ(x)dx =

∫
A(ε,R)

∆ ln |x|ϕ(x)dx+

∫
∂A(ε,R)

(
ln |x|∂ϕ(x)

∂~n
− ϕ∂ ln |x|

∂~n

)
dS.

An elementary computation (say, in the polar coordinates) shows that ∆ ln |x| = 0 for x 6= 0 so the
first integral on the right vanishes. Furthermore, ∂A(ε,R) = Cε ∪ CR, where Cr = {x : |x| = r} so

that
∫
∂A(ε,R) =

∫
Cε

+
∫
CR

. By the choice of R we have ϕ(x) = ϕ(x)
∂~n = 0 for x ∈ CR. Thus,∫

A(ε,R)
ln |x|∆ϕ(x)dx =

∫
Cε

(
ln |x|∂ϕ(x)

∂~n
− ϕ∂ ln |x|

∂~n

)
dS.

Since ~n is the vector of the unit exterior normal to A(ε,R), for every x ∈ Cε we have ~n = −x/|x|,
and so

∂

∂~n
= − ∂

∂~x1

x1

|x|
− ∂

∂~x2

x2

|x|
.

Then, ∣∣∣∣∫
Cε

ln |x|∂ϕ(x)

∂~n
dS

∣∣∣∣ ≤ const · ε| ln ε| −→ 0, ε −→ 0.

Finally, ∂ ln |x|
∂~n = − 1

|x| so that

−
∫
Cε

ϕ
∂ ln |x|
∂~n

dS =
1

ε

∫
Cε

ϕdS.

But we have

lim
ε−→0

1

ε

∫
Cε

ϕ(x)dS =

(
lim
ε−→0

1

ε

∫
Cε

(ϕ(x)− ϕ(0))dS

)
+ 2πϕ(0) = 2πϕ(0).

Thus, ∫
R2

ln |x|∆ϕ(x)dx = 2πϕ(0),

which proves (7).
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(b) Now we show that

∆
1

|x|n−2
= −(n− 2)Snδ(x), n ≥ 3,(8)

where the constant Sn is equal to the surface area of the unit sphere in Rn. The proof is quite
similar to part (a). We use the notation r = r(x) = |x|. For a function f : R −→ R of class C2 we
have

∂

∂xj
f(r) = f ′(r)

xj
r
,

∂2

∂x2
j

f(r) = f ′′(r)
x2
j

r2
+ f ′(r)

r2 − x2
j

r2
,

∆f(r) = f ′′(r) + f ′(r)
n− 1

r
.

Setting f(r) = rp, we obtain

∆rp = p(p+ n− 2)rp−2.

Therefore, ∆r2−n = 0 on Rn\{0}. Also note that the function x 7→ r2−n is in L1
loc(Rn).

We have, for sufficiently large R > 0, that

〈∆r2−n, ϕ〉 = 〈r2−n,∆ϕ〉 =

∫
Rn
r2−n∆ϕ(x) =

∫
|x|≤R

r2−n∆ϕ(x)dx,

and ∫
|x|≤R

r2−n∆ϕ(x)dx = lim
ε−→0+

∫
A(ε,R)

r2−n∆ϕ(x)dx.

Again, by the Green formula we have∫
A(ε,R)

r2−n∆ϕ(x)dx =

∫
A(ε,R)

∆r2−nϕ(x)dx+

∫
∂A(ε,R)

(
r2−n∂ϕ(x)

∂~n
− ϕ∂r

2−n

∂~n

)
dS.

The first integral on the right vanishes and by the choice of R we have ϕ(x) = ϕ(x)
∂~n = 0 for x ∈ CR.

Thus, ∫
A(ε,R)

r2−n∆ϕ(x)dx =

∫
Cε

(
r2−n∂ϕ(x)

∂~n
− ϕ∂r

2−n

∂~n

)
dS.

Since ~n is the vector of the unit exterior normal to A(ε,R), for every x ∈ Cε we have ~n = −x/|x|
and

∂

∂~n
= − ∂

∂~x1

x1

|x|
− · · · − ∂

∂~xn

xn
|x|
.

Then, ∣∣∣∣∫
Cε

r2−n∂ϕ(x)

∂~n
dS

∣∣∣∣ ≤ const · ε −→ 0, ε→ 0.

Finally, ∂r2−n

∂~n = (n− 2)r1−n, so that

−
∫
Cε

ϕ
∂r2−n

∂~n
dS = −(n− 2)

1

εn−1

∫
Cε

ϕdS.
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Then

−(n− 2) lim
ε−→0

1

εn−1

∫
Cε

ϕ(x)dS = −(n− 2)

(
lim
ε−→0

1

εn−1

∫
Cε

(ϕ(x)− ϕ(0))dS

)
−(n− 2)Snϕ(0) = −(n− 2)Snϕ(0),

which proves (8).
If n = 3, then S3 = 4π so that

∆
1

r
= −4πδ(x), x ∈ R3.

12.3. Heat Equation. Consider the function

E(x, t) =
θ(t)

(2a
√
πt)n

e−
|x|2

4a2t ,

where the function θ is the Heaviside function on R. The function E is locally integrable in Rn+1.
Indeed, E(x, t) = 0 if t < 0 and E(x, t) is positive for t ≥ 0. Furhermore, E is continuous
(and vanishes) on the hyperplane {(x, t) : t = 0}. Consider a bouded set of Rn+1 of the form
B(0, R)× [0, R], where B(0, R) = {x ∈ Rn : |x| ≤ R}. By Fubini’s theorem we have∫

B(0,R)×[0,R]
E(x, t)dxdt =

∫
[0,R]

(∫
B(0,R)

E(x, t)dx

)
dt ≤

∫
[0,R]

(∫
Rn
E(x, t)dx

)
dt.

After the change of coordinates x/2a
√
t = y we have∫

Rn
E(x, t)dx =

∫
Rn

1

(2a
√
πt)n

e−
|x|2

4a2tdx =
1

(
√
π)n

n∏
j=1

∫
R
e−y

2
j dyj = 1.

Thus, ∫
Rn
E(x, t)dx = 1,(9)

and so ∫
[0,R]

(∫
Rn
E(x, t)dx

)
dt ≤

∫
[0,R]

dt = R.

This proves the local integrability of E(x, t).
Let us prove the following identity:

∂E

∂t
− a2∆E = δ(x, t).(10)

We first observe that for t > 0 the function E is of class C∞, and by an elementary computation,
which is left for the reader, we have

∂E

∂t
(x, t)− a2∆E = 0, t > 0.(11)

Here the derivatives are taken in the usual sense. Now let ϕ ∈ D(Rn+1). Then

〈∂E
∂t
− a2∆E,ϕ〉 = −〈E, ∂ϕ

∂t
+ a2∆ϕ〉 = −

∫ ∞
0

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt.

By the Lebesgue convergence theorem we have

−
∫ ∞

0

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt = − lim

ε−→0

∫ ∞
ε

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt.
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Since suppφ is compact, the integration by parts yields

−
∫ ∞
ε

(∫
Rn
E(x, t)

∂ϕ

∂t
dx

)
dt =

∫
Rn
E(x, ε)ϕ(x, ε)dx+

∫ ∞
ε

(∫
Rn

∂E

∂t
ϕdx

)
dt.

Fix R > 0 such that ϕ(x, t) = 0 for |x| ≥ R/2. Green’s formula implies∫
Rn
E(x, t)∆ϕ(x, t)dx =

∫
|x|≤R

E(x, t)∆ϕ(x, t)dx =

∫
Rn

(∆E(x, t))ϕ(x, t)dx,

since ∫
|x|=R

(
E
∂ϕ

∂~n
− ϕ∂E

∂~n

)
dx = 0

in view of the choice of R. Thus,

− lim
ε−→0

∫ ∞
ε

(∫
Rn
E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dx

)
dt = lim

ε−→0

(∫
E(x, ε)ϕ(x, ε)dx

+

∫ ∞
ε

(∫
Rn

(
∂E

∂t
− a2∆E)ϕdx

)
dt

)
= lim

ε−→0

(∫
E(x, ε)ϕ(x, ε)dx

)
,

where the last equality follows by (11). We need the following

Claim 1. One has

lim
ε−→0

∫
E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx −→ 0.

For the proof, fix R > 0 such that suppφ ⊂ {|(x, t)| < R}. The function φ is Lipschitz continuous
and hence, uniformly continuous on Rn+1. Given α > 0 there exists δ > 0 such that |φ(x, ε) −
φ(x, 0)| < α/2 for all x ∈ Rn. Therefore,∫

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx = I + II,

with

I =

∫
|x|<δ

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx,

and

II =

∫
δ≤|x|≤R

E(x, ε)[ϕ(x, ε)− ϕ(x, 0)]dx.

Then

|I| ≤ (α/2)

∫
Rn
E(x, ε)dx = α/2.

Set

M(ε) =
1

(2a
√
πε)n

e−
|δ|2

4a2ε ,

and C = supx∈Rn |φ(x)|. Then sup|x|≥δ E(x, ε) = M(ε) and

|II| ≤ 2C

∫
δ≤|x|≤R

E(x, ε)dx ≤ 4CM(ε)R→ 0, ε→ 0.

It follows that |II| ≤ α/2 for all ε small enough. This proves the claim.

We conclude that

lim
ε−→0

∫
E(x, ε)ϕ(x, ε)dx = lim

ε−→0
(

∫
E(x, ε)ϕ(x, 0)dx.

To finish the proof we need the following
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Claim 2. The following holds in D′(Rn):

lim
t−→0+

E(x, t) = δ(x).

For the proof, let ψ ∈ D(Rn). Since ψ has a compact support, there exists a constant C > 0
such that

|ψ(x)− ψ(0)| ≤ C|x|, x ∈ Rn.
We have ∣∣∣∣∫

Rn
E(x, t)(ψ(x)− ψ(0))dx

∣∣∣∣ ≤ C

(4πa2t)n/2

∫
Rn
e−
|x|2

4a2t |x|dx.

Evaluating the last integral in the spherical coordinates (we denote by σn the surface of the unit
sphere in Rn) we obtain that the last integral is equal to

Cσn

(4πa2t)n/2

∫ ∞
0

e−
r2

4a2t rndr =
2Cσn

√
ta

πn/2

∫ ∞
0

e−u
2
undu = C ′

√
t.

Hence, ∣∣∣∣∫
Rn
E(x, t)(ψ(x)− ψ(0))dx

∣∣∣∣ −→ 0, as t −→ 0 + .

Then, using (9), we have

〈E(x, t), ψ〉 =

∫
Rn
E(x, t)ψ(x)dx = ψ(0)

∫
E(x, t)dx+

∫
E(x, t)(ψ(x)− ψ(0))dx

−→ ψ(0) = 〈δ(x), ψ〉.
This proves the claim.

Let ψ(x) = ϕ(x, 0) ∈ D(Rn). Then

〈∂E
∂t
− a2∆E,ϕ〉 = lim

ε−→0

(∫
E(x, ε)ϕ(x, 0)dx

)
= ϕ(0) = 〈δ(x, t), ϕ〉.

This concludes the proof of (10).


