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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

2. INVERSE FUNCTION THEOREM AND FRIENDS.
2.1. Inverse Function theorem.

Lemma 2.1 (Contraction Lemma). Let (X,d) be a complete metric space, and ¢ : X — X a
contraction, i.e., a map satisfying for some ¢ < 1,

d(¢(z),d(y)) < cd(z,y), z,y€X.
Then there exists a unique fized point p of ¢, i.e., p € X such that ¢(p) = p.
Proof. Pick any xg € X, and define {z,} inductively by setting x,+1 = ¢(x,), n =0,1,.... Then
for n > 0 we have
d(xn+1; xn) = d(¢($n), ¢(xn—1)) < Cd(xna xn—l)-
This gives the following relation

d(Tpt1,Tn) < d(z1,20), n=0,1,2,...

If n < m, then

n

(X, Tm) < Z d(ziyzio1) < (" 4+ @™ d(2q, m0) < 1C d(x1,xp).

i=n+1 o
Thus, {z,} is a Cauchy sequences which converges to some point p by completeness of X. Since ¢
is a contractions, it is continuous, and ¢(p) = lim, oo ¢(2,) = limy, 00 Tpt1 = -
The uniqueness of p is trivial. ]

Definition 2.2. A map f : R — R™ is called Lipschitz continuous on  C R™ if there is a
constant C > 0 such that

Such C is called o Lipschitz constant for f.

Lemma 2.3. Let Q C R" be a domain and f : Q — R™ be a map of class C*(Q). Then f is
Lipschitz continuous on any compact convex subset B C €.

Proof. Let M = sup,cp ||Df(z)||. Let a,b € B. Since B is convex, the straight line segment
{r=a+tb—a), te[0,1]}

connecting a and b is contained in B. By the Fundamental Theorem of Calculus and the Chain
Rule we have for each component of f,

1 1
£:(b) — fila) = /0 © fiat 1o — a))dt = /0 Dfi(a+t(b— a))(b - a)dt.

Hence,

m m 1 2
B~ @ =S 1A0) — fil@P <3 ( | 1psita+ 10— a1 - ardt> < n(M]b— al)>
i=1 i=1 \J0
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From this the assertion follows. OJ

A C*-smooth map f : Q — Q' between open sets in R” is called a (C*-)diffeomorphism if
f1:Q — Qis well defined and C*-smooth. In general, the inverse of a smooth map, if exists,
is not necessarily smooth (but always continuous!). For example, the function f(z) = 23 is C°°-
smooth on R, and has a continuous inverse f~!(x) = ¢z. However, f~! is not differentiable at the
origin (note that f’(0) = 0). The situation is different if Df is invertible.

Theorem 2.4 (Inverse Function Theorem). Suppose U,V C R"™ are open subsets, f : U — V is
of class C*(Q) and f'(p) is nonsingular (invertible) for some p € U. Then there exist connected

neighbourhoods Uy C U of p and Vo C V of f(p) such that flu, : Ug — Vo is a CF-diffeomorphism.

Proof. We may replace f with fi(x) = f(xz+p)— f(p). The map f; is smooth and satisfies f1(0) =0
and Df(p) = Df1(0). We may further replace f; with fo = Df1(0)~! o fi. The map f5 is smooth,
f2(0) = 0, and Df3(0) = Id, the identity map. Hence, we may assume that f is defined in a
neighbourhood U of the origin, f(0) = 0 and Df(0) = Id.

Set h(z) = x — f(x). Then Dh(0) = 0, and so for any € > 0 there exists § > 0 such that
||Dh(z)|| < e for x € B(0,0) = {z € R" : x| < §}. By Lemma 2.3 we may § > 0 such that

(1) Ih(e) — h(z)| < lyg/ 2|, Va2 € B(0,5).

Then [o' — 2 <|f(2') = f(2)] + |h(a’) — h(x)] < |f(2) = f(2)| + 3]z — /|, and so

(2) 2" — 2| <2/f(2") = f(2)], x,2" € B(0,9).

This shows, in particular, that f is injective on B(0,0). For an arbitrary y € B(0,4/2) we show
) =

that there exists a unique = € B(0,6) such that f(z) =y. Let g(z) =y + h(z) =y +x — f(x), so
g(x) =z if and only if f(z) =y. If |z| <4, then

Q 9(@)] < Iyl +1h(a)| < 3 + 2ol < 5

so g maps B(0,0) to itself. By (1), |[g(x)—g(2’)| = |h(z)—h(z )| < %]z —2/, hence g is a contraction,
and by Lemma 2.1, g has a unique fixed point € B(0,0). By (3 ) |z| = |g(x)| < 4, so z € B(0,9)
as claimed.

Let Uy = B(0,0) N f~%(B(0,6/2)). Then U; C R™ is open, and f : Uy — B(0,6/2) is bijective,
so f~! exists. Estimate (2) shows that f~! is continuous. Let Uy be a connected component of Uy
containing the origin, and Vy = f(Uy). Then f : Uy — Vj is a homeomorphism.

To show that f : Uy — Vj is a diffeomorphism it remains to show that f=' € C'(V5). Let
b= f(a) for some a € Uy, b € Vp, and set

R(v) = f(a+v) = f(a) = Df(a)v,
and
S(h) = f~'b+h) = f1(b) = Df(a)™"
Let
v(h) = fHO+h) + 1 0) = f b+ D) —a.
Then h = f(a+v(h)) — f(a), and so
S(h) =w(h) = Df(a)"'h = Df(a)"! [Df(a)v(h) + f(a) = f(a+v(h))] = =Df(a)~" R(v(h)),
If there exist constants C, ¢ > 0 such that
(4) clh| < [v(h)| < CIhl,
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then

[S(h)] | R (v(h))]

1y [ B(v(h))] _1p [BR@()] v(h)| 1
o < IDf(a) 7| = < IDf(a) 7] < ClDf(a)""|| :
|h Id [w(R)[ [A] v(h)|
The expression on the right converges to zero as h — 0 by differentiability of f. This proves that
f~1 is differentiable at b. It remains to show (4). We have

v(h) = Df(a) "' Df(a)v(h) = Df(a)" [f(a+uv(h)) - f(a) = R(v(h))] = Df(a)"*(h — R(v(h))),

and so

()] < IDf(@)~ || k] + 1D f(a) | [R(v(h))]-
Since |R(v)|/|v| — 0 as |v| — 0 by differentiability of f, there exists d; > 0 such that
() [R(u)| < [o]/CIIDf(@)7H]), for o] < 61
By continuity of f~!, there exists do > 0 such that |h| < do implies |v(h)| < 61, and therefore,
[o(h)] < 2/[Df(a) ]|l
whenever |h| < dy which gives half of (4). For the other half, consider
h= fla+v(h)) = f(a) = Df(a)o(h) + R(v(h)).
Therefore, in view of (5) for |h| < da,
1
[l < [[Df(@)ll[v(h)] + [R(v(h))] < (HDf(a)H + ) [v(h)].
2/[Df(a)~ ]

By Theorem 1.5 the partial derivatives of f~! are defined at each point y € V. Observe that the
formula Df~1(y) = Df(f~1(y))~! implies that the map Df~! from Vj into the space of invertible
n X m matrices can be written in the form

F1 Df L
Vo — Up — GL(n,R) = GL(n,R),

where ¢ : GL(n,R) — GL(n,R) is the matrix inversion map. It follows from Cramer’s rule that ¢ is
a smooth map of the matrix components. Thus the partial derivatives of f~! are continuous, and
so f~1is of class C'. To prove that f~! € C*(Vp) assume by induction that we have shown that
f~1is of class C*~1. Because Df~! is a composition of C*~1-smooth functions, it is itself C*~1-
smooth, which implies that the partial derivatives of f~1 are of class C*~!, so f~! is C*-smooth.
This completes the proof. O

Example 2.1 (Spherical coordinates). Consider the map f : (p, ¢,0) — (z,y, z) given by

xr = psingcosd
y = psingsinf
z = pcos¢

A computation shows that the differential of this map equals p?sin¢. Hence, by the Inverse

Function theorem, f is a local diffeomorphism from {p > 0,0 € R, 0 < ¢ < 7} to R3. By choosing

a domain U where f is injective we conclude that the map f: U — f(U) is a diffeomorphism.
This choice of coordinates can be generalized to arbitrary dimension. Consider the map

o : (7", 91, ceny Gn—l) —> (.212'1, ,.’L‘n)
defined on the domain

U= (0,00) x (0,7) X ... x (0,7) x (0,27) C R"
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by the equations

x1 = rcosf,

ZTo = rsin by cos by,

3 = rsin 6y sin 05 cos 03,

Tp_1 =7sinfisinb, . ..sinb,_ocosb,_1,
Tp =rsinf;sinfds...sinf, 1.
By the Inverse Function theorem, @ is a diffeomorphism since its differential satisfies
det D® = r"L(sin6;)"2...sin 6,,_o,
which does not vanish on U. A diffeomorphism that is used to simplify considerations or calculations

is usually called a (local) change of coordinates. ¢

The rank of a map f : R” — R™ at a point z is defined as the rank of the differential D f(x)
(viewed as an m x m matrix), which is the same as dim D f(z)(R"™). The following theorem can be
viewed as a generalization of the Inverse Function theorem.

Theorem 2.5 (Rank theorem). Suppose U C R™ and V' C R™ are open sets and f : U — V is
a smooth map with constant rank k. For any point p € U, there exist a connected neighbourhood
Ui C U, a change of coordinates (i.e., a diffeomorphism) ¢ : Uy — Uy, ¢(p) = 0 and connected
neighbourhood Vi C V' with a change of coordinates 1) : Vi — Vi, ¥(f(p)) = 0, such that

wofoqﬁ_l(xl,...,xk,xk+1,...,xm) = (wl,-..,.ka,O,.--,O)-
Here Uy and Vi can be assumed to be connected open neighbourhoods of the origin in R™ and R™
respectively.
Proof. Since D f(p) has rank k, there exists a k x k minor with nonzero determinant. By reodering
the coordinates, we may assume that it is the upper left minor, (gg) for i,j5 = 1,..., k. After

translation we may assume that p = 0, and f(0) = 0. Let (z,y) € RF x R™7* (v, w) € RF x R**
be the coordinates. If we write f(z,y) = (Q(x,y), R(z,y)) for some smooth maps Q : U — RF,

R:U — R then (g%' e is nonsingular at the origin. Define ¢(z,y) = (Q(x,y),y). Then
<iyg<
0Q; 0Q;
D¢(0) = [ 9% (0) 9y; (0)
0 Ik

is nonsingular. By the Inverse Function theorem there are connected neighbourhoods U; and
Up of the origin in R™ such that ¢ : Uy — Up is a diffeomorphism. Writing the inverse map
o~ Nx,y) = (A(z,y), B(z,y)), A: Uy — R¥ B: Uy — R™F, we have

(z,y) = ¢(A(z,y), B(z,y)) = (Q(A(,y), B(z,y)), B(z,y)).
It follows that B(z,y) =y, and so ¢~ '(z,y) = (A(x,9),y), Q(A(z,y),y) = x, and therefore,
fo ¢_1(377y) = (.T,R(:L’,y)), R(x,y) = R(A(z,y),y).

The Jacobian matrix of this map at an arbitrary point (z,y) € Up is

I 0
D(fo¢ ") (x,y) = < agi oR, > :

oz dy;
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Since composing with a diffeomorphism does not change the rank of a map, this matrix has rank
equal to k everywhere on Up. Since the first & columns are obviously independent, the rank can be
OR;
Oy,
of variables y. Thus, setting S(x) = R(z,0), we have

(6) foo  (ay) = (z,5(x)).

Let Vi = {(v,w) € V : (v,0) € Up}, which is a neighbourhood of the origin. The map (v, w) =
(v,w — S(v)) is a diffeomorphism from V; onto its image, which can be seen by observing that
P~ Y(s,t) = (s,t + S(s)). It follows from (6) that

Yo foo H(z,y) =v(x,S(x) = (z,5(z) - S(x)) = (z,0).

k only if the partial derivatives vanish identically on Uy, which implies that R is independent

O

For a domain Q C R", a smooth map f : Q@ — R is called an immersion if D f(x) is injective for
all x € Q (i.e., Df(z) has a trivial kernel for all z), and a submersion if D f(x) is surjective for all
z € Q. Clearly n < m is a necessary condition for f to be an immersion, while n > m is required
for a submersion. These are important examples of maps of constant rank. The Rank theorem is
a powerful tool for the study of such maps. For example, let us show that if f : R™ — R" is an
injective map of constant rank, then it is an immersion. Indeed, if f is not an immersion, then the
rank k of f is less than m. By the Rank theorem in a neighbourhood of any point there is a local
change of coordinates such that f becomes

flxy, . op, xpa1, ooy Tm) = (1, ., 2%, 0,...,0).

It follows that f(0,...,0,e) = f(0) for € small, which contradicts injectivity of f.
Another useful consequence of the Inverse Function theorem is the following theorem which gives
conditions under which a level set of a smooth map is locally the graph of a smooth function.

Theorem 2.6 (Implicit Function Theorem). Let U C R"™ x R* be an open set, and let (z,y) =
(1, s Zn,Y1,...,Yx) denote the standard coordinates on U. Suppose ® : U — RF is a smooth
map, (a,b) € U, and ¢ = ®(a,b). If the k x k matrix

is nonsingular, then there exist neighbourhoods Vo C R™ of a and Wy C R¥ of b, and a smooth map
f: Vo — Wo such that ®~1(c) N Vo x Wy is the graph of f, i.e., ®(x,y) = ¢ for (z,y) € Vo x Wy if
and only if y = f(x).
Proof. Consider the map ¥ : U — R" x R¥ defined by ¥(z,y) = (z, ®(x,y)). Its differential at
(a,b) is
I, 0

DV(a,b) = o0, o0, ,
8;5; (a7 b) ayjl (CL, b)
which is nonsingular by hypothesis. Thus by the Inverse Function theorem there exist connected
open neighbourhoods Uy of (a,b) and Yy of (a,c) such that ¥ : Uy — Yj is a diffeomorphism.

Shrinking Uy and Yj if necessary, we may assume that Uy = V x W is a product neighbourhood.
The inverse map has the form (why?)

Yz, y) = (z, B(z,y))




6 RASUL SHAFIKOV
for some smooth map B : Yy = W. Let Vo = {o € V : (z,¢) € Yp} and Wy = W, and define
f: Vo — Wy by f(z) = B(z,c). Comparing y components in the relation (z,¢) = ¥ o U~1(z,c)
yields
c=®(z,B(z,c)) = ®(z, f(x)),

whenever z € Vj so the graph of f is contained in ®~!(c). Conversely suppose (z,y) € Vo x Wp
and ®(z,y) = ¢. Then ¥ (z,y) = (z, ®(x,y)) = (z,c), so

(z,y) = \Ilil(mac) = (2, B(z,¢)) = (z, f(2)),
which implies that y = f(z). O



