v: 2019-01-17

REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

2. Inverse Function Theorem and Friends.

2.1. Inverse Function theorem.

Lemma 2.1 (Contraction Lemma). Let (X, d) be a complete metric space, and $\phi: X \rightarrow X a$ contraction, i.e., a map satisfying for some $c<1$,

$$
d(\phi(x), \phi(y)) \leq c d(x, y), \quad x, y \in X
$$

Then there exists a unique fixed point p of ϕ, i.e., $p \in X$ such that $\phi(p)=p$.
Proof. Pick any $x_{0} \in X$, and define $\left\{x_{n}\right\}$ inductively by setting $x_{n+1}=\phi\left(x_{n}\right), n=0,1, \ldots$ Then for $n>0$ we have

$$
d\left(x_{n+1}, x_{n}\right)=d\left(\phi\left(x_{n}\right), \phi\left(x_{n-1}\right)\right) \leq c d\left(x_{n}, x_{n-1}\right)
$$

This gives the following relation

$$
d\left(x_{n+1}, x_{n}\right) \leq c^{n} d\left(x_{1}, x_{0}\right), \quad n=0,1,2, \ldots
$$

If $n<m$, then

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=n+1}^{m} d\left(x_{i}, x_{i-1}\right) \leq\left(c^{n}+c^{n+1} \cdots+c^{m-1}\right) d\left(x_{1}, x_{0}\right) \leq \frac{c^{n}}{1-c} d\left(x_{1}, x_{0}\right)
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequences which converges to some point p by completeness of X. Since ϕ is a contractions, it is continuous, and $\phi(p)=\lim _{n \rightarrow \infty} \phi\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=p$.

The uniqueness of p is trivial.
Definition 2.2. A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called Lipschitz continuous on $\Omega \subset \mathbb{R}^{n}$ if there is a constant $C>0$ such that

$$
|f(x)-f(y)| \leq C|x-y|, \quad x, y \in \Omega
$$

Such C is called a Lipschitz constant for f.
Lemma 2.3. Let $\Omega \subset \mathbb{R}^{n}$ be a domain and $f: \Omega \rightarrow \mathbb{R}^{m}$ be a map of class $C^{1}(\Omega)$. Then f is Lipschitz continuous on any compact convex subset $B \subset \Omega$.
Proof. Let $M=\sup _{x \in B}\|D f(x)\|$. Let $a, b \in B$. Since B is convex, the straight line segment

$$
\{x=a+t(b-a), t \in[0,1]\}
$$

connecting a and b is contained in B. By the Fundamental Theorem of Calculus and the Chain Rule we have for each component of f,

$$
f_{i}(b)-f_{i}(a)=\int_{0}^{1} \frac{d}{d t} f_{i}(a+t(b-a)) d t=\int_{0}^{1} D f_{i}(a+t(b-a))(b-a) d t
$$

Hence,

$$
|f(b)-f(a)|^{2}=\sum_{i=1}^{m}\left|f_{i}(b)-f_{i}(a)\right|^{2} \leq \sum_{i=1}^{m}\left(\int_{0}^{1}\left|D f_{i}(a+t(b-a))\right||b-a| d t\right)^{2} \leq n(M|b-a|)^{2}
$$

From this the assertion follows.
A C^{k}-smooth map $f: \Omega \rightarrow \Omega^{\prime}$ between open sets in \mathbb{R}^{n} is called a (C^{k} - diffeomorphism if $f^{-1}: \Omega^{\prime} \rightarrow \Omega$ is well defined and C^{k}-smooth. In general, the inverse of a smooth map, if exists, is not necessarily smooth (but always continuous!). For example, the function $f(x)=x^{3}$ is $C^{\infty}{ }_{-}$ smooth on \mathbb{R}, and has a continuous inverse $f^{-1}(x)=\sqrt[3]{x}$. However, f^{-1} is not differentiable at the origin (note that $f^{\prime}(0)=0$). The situation is different if $D f$ is invertible.

Theorem 2.4 (Inverse Function Theorem). Suppose $U, V \subset \mathbb{R}^{n}$ are open subsets, $f: U \rightarrow V$ is of class $C^{k}(\Omega)$ and $f^{\prime}(p)$ is nonsingular (invertible) for some $p \in U$. Then there exist connected neighbourhoods $U_{0} \subset U$ of p and $V_{0} \subset V$ of $f(p)$ such that $\left.f\right|_{U_{0}}: U_{0} \rightarrow V_{0}$ is a C^{k}-diffeomorphism.
Proof. We may replace f with $f_{1}(x)=f(x+p)-f(p)$. The map f_{1} is smooth and satisfies $f_{1}(0)=0$ and $D f(p)=D f_{1}(0)$. We may further replace f_{1} with $f_{2}=D f_{1}(0)^{-1} \circ f_{1}$. The map f_{2} is smooth, $f_{2}(0)=0$, and $D f_{2}(0)=I d$, the identity map. Hence, we may assume that f is defined in a neighbourhood U of the origin, $f(0)=0$ and $D f(0)=I d$.

Set $h(x)=x-f(x)$. Then $D h(0)=0$, and so for any $\varepsilon>0$ there exists $\delta>0$ such that $\|D h(x)\| \leq \varepsilon$ for $x \in B(0, \delta)=\left\{x \in \mathbb{R}^{n}:|x| \leq \delta\right\}$. By Lemma 2.3 we may $\delta>0$ such that

$$
\begin{equation*}
\left|h\left(x^{\prime}\right)-h(x)\right| \leq \frac{1}{2}\left|x^{\prime}-x\right|, \quad \forall x, x^{\prime} \in B(0, \delta) . \tag{1}
\end{equation*}
$$

Then $\left|x^{\prime}-x\right| \leq\left|f\left(x^{\prime}\right)-f(x)\right|+\left|h\left(x^{\prime}\right)-h(x)\right| \leq\left|f\left(x^{\prime}\right)-f(x)\right|+\frac{1}{2}\left|x-x^{\prime}\right|$, and so

$$
\begin{equation*}
\left|x^{\prime}-x\right| \leq 2\left|f\left(x^{\prime}\right)-f(x)\right|, \quad x, x^{\prime} \in B(0, \delta) \tag{2}
\end{equation*}
$$

This shows, in particular, that f is injective on $B(0, \delta)$. For an arbitrary $y \in B(0, \delta / 2)$ we show that there exists a unique $x \in B(0, \delta)$ such that $f(x)=y$. Let $g(x)=y+h(x)=y+x-f(x)$, so $g(x)=x$ if and only if $f(x)=y$. If $|x| \leq \delta$, then

$$
\begin{equation*}
|g(x)| \leq|y|+|h(x)| \leq \frac{\delta}{2}+\frac{1}{2}|x| \leq \delta, \tag{3}
\end{equation*}
$$

so g maps $B(0, \delta)$ to itself. By (1), $\left|g(x)-g\left(x^{\prime}\right)\right|=\left|h(x)-h\left(x^{\prime}\right)\right| \leq \frac{1}{2}\left|x-x^{\prime}\right|$, hence g is a contraction, and by Lemma 2.1, g has a unique fixed point $x \in B(0, \delta)$. By (3), $|x|=|g(x)|<\delta$, so $x \in B(0, \delta)$ as claimed.

Let $U_{1}=B(0, \delta) \cap f^{-1}(B(0, \delta / 2))$. Then $U_{1} \subset \mathbb{R}^{n}$ is open, and $f: U_{1} \rightarrow B(0, \delta / 2)$ is bijective, so f^{-1} exists. Estimate (2) shows that f^{-1} is continuous. Let U_{0} be a connected component of U_{1} containing the origin, and $V_{0}=f\left(U_{0}\right)$. Then $f: U_{0} \rightarrow V_{0}$ is a homeomorphism.

To show that $f: U_{0} \rightarrow V_{0}$ is a diffeomorphism it remains to show that $f^{-1} \in C^{1}\left(V_{0}\right)$. Let $b=f(a)$ for some $a \in U_{0}, b \in V_{0}$, and set

$$
R(v)=f(a+v)-f(a)-D f(a) v,
$$

and

$$
S(h)=f^{-1}(b+h)-f^{-1}(b)-D f(a)^{-1} h .
$$

Let

$$
v(h)=f^{-1}(b+h)+f^{-1}(b)=f^{-1}(b+h)-a .
$$

Then $h=f(a+v(h))-f(a)$, and so

$$
S(h)=v(h)-D f(a)^{-1} h=D f(a)^{-1}[D f(a) v(h)+f(a)-f(a+v(h))]=-D f(a)^{-1} R(v(h)) .
$$

If there exist constants $C, c>0$ such that

$$
\begin{equation*}
c|h| \leq|v(h)| \leq C|h|, \tag{4}
\end{equation*}
$$

then

$$
\frac{|S(h)|}{|h|} \leq\left\|D f(a)^{-1}| | \frac{|R(v(h))|}{|h|} \leq\right\| D f(a)^{-1}\left\|\frac{|R(v(h))| \mid}{|v(h)|} \frac{|v(h)|}{|h|} \leq C\right\| D f(a)^{-1}| | \frac{|R(v(h))|}{|v(h)|} .
$$

The expression on the right converges to zero as $h \rightarrow 0$ by differentiability of f. This proves that f^{-1} is differentiable at b. It remains to show (4). We have

$$
v(h)=D f(a)^{-1} D f(a) v(h)=D f(a)^{-1}[f(a+v(h))-f(a)-R(v(h))]=D f(a)^{-1}(h-R(v(h))),
$$

and so

$$
|v(h)| \leq\left\|D f (a) ^ { - 1 } \left|\left\||h|+\left|\left|D f(a)^{-1} \||R(v(h))| .\right.\right.\right.\right.\right.
$$

Since $|R(v)| /|v| \rightarrow 0$ as $|v| \rightarrow 0$ by differentiability of f, there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
|R(v)| \leq|v| /\left(2| | D f(a)^{-1}| |\right), \text { for }|v| \leq \delta_{1} \tag{5}
\end{equation*}
$$

By continuity of f^{-1}, there exists $\delta_{2}>0$ such that $|h|<\delta_{2}$ implies $|v(h)| \leq \delta_{1}$, and therefore,

$$
|v(h)| \leq 2| | D f(a)^{-1} \||h|,
$$

whenever $|h| \leq \delta_{2}$ which gives half of (4). For the other half, consider

$$
h=f(a+v(h))-f(a)=D f(a) v(h)+R(v(h)) .
$$

Therefore, in view of (5) for $|h|<\delta_{2}$,

$$
|h| \leq||D f(a)|||v(h)|+|R(v(h))| \leq\left(\|D f(a)\|+\frac{1}{2| | D f(a)^{-1} \|}\right)|v(h)| .
$$

By Theorem 1.5 the partial derivatives of f^{-1} are defined at each point $y \in V_{0}$. Observe that the formula $D f^{-1}(y)=D f\left(f^{-1}(y)\right)^{-1}$ implies that the map $D f^{-1}$ from V_{0} into the space of invertible $n \times n$ matrices can be written in the form

$$
V_{0} \xrightarrow{f^{-1}} U_{0} \xrightarrow{D f} G L(n, \mathbb{R}) \xrightarrow{\iota} G L(n, \mathbb{R}),
$$

where $\iota: G L(n, \mathbb{R}) \rightarrow G L(n, \mathbb{R})$ is the matrix inversion map. It follows from Cramer's rule that ι is a smooth map of the matrix components. Thus the partial derivatives of f^{-1} are continuous, and so f^{-1} is of class C^{1}. To prove that $f^{-1} \in C^{k}\left(V_{0}\right)$ assume by induction that we have shown that f^{-1} is of class C^{k-1}. Because $D f^{-1}$ is a composition of C^{k-1}-smooth functions, it is itself C^{k-1} smooth, which implies that the partial derivatives of f^{-1} are of class C^{k-1}, so f^{-1} is C^{k}-smooth. This completes the proof.
Example 2.1 (Spherical coordinates). Consider the map $f:(\rho, \phi, \theta) \rightarrow(x, y, z)$ given by

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi
\end{aligned}
$$

A computation shows that the differential of this map equals $\rho^{2} \sin \phi$. Hence, by the Inverse Function theorem, f is a local diffeomorphism from $\{\rho>0, \theta \in \mathbb{R}, 0<\phi<\pi\}$ to \mathbb{R}^{3}. By choosing a domain U where f is injective we conclude that the map $f: U \rightarrow f(U)$ is a diffeomorphism.

This choice of coordinates can be generalized to arbitrary dimension. Consider the map

$$
\Phi:\left(r, \theta_{1}, \ldots, \theta_{n-1}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)
$$

defined on the domain

$$
U=(0, \infty) \times(0, \pi) \times \ldots \times(0, \pi) \times(0,2 \pi) \subset \mathbb{R}^{n}
$$

by the equations

$$
\begin{aligned}
& x_{1}=r \cos \theta_{1}, \\
& x_{2}=r \sin \theta_{1} \cos \theta_{2}, \\
& x_{3}=r \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}, \\
& \ldots \\
& x_{n-1}=r \sin \theta_{1} \sin \theta_{2} \ldots \sin \theta_{n-2} \cos \theta_{n-1}, \\
& x_{n}=r \sin \theta_{1} \sin \theta_{2} \ldots \sin \theta_{n-1} .
\end{aligned}
$$

By the Inverse Function theorem, Φ is a diffeomorphism since its differential satisfies

$$
\operatorname{det} D \Phi=r^{n-1}\left(\sin \theta_{1}\right)^{n-2} \ldots \sin \theta_{n-2}
$$

which does not vanish on U. A diffeomorphism that is used to simplify considerations or calculations is usually called a (local) change of coordinates. \diamond

The rank of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at a point x is defined as the rank of the differential $D f(x)$ (viewed as an $n \times m$ matrix), which is the same as $\operatorname{dim} D f(x)\left(\mathbb{R}^{n}\right)$. The following theorem can be viewed as a generalization of the Inverse Function theorem.
Theorem 2.5 (Rank theorem). Suppose $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ are open sets and $f: U \rightarrow V$ is a smooth map with constant rank k. For any point $p \in U$, there exist a connected neighbourhood $U_{1} \subset U$, a change of coordinates (i.e., a diffeomorphism) $\phi: U_{1} \rightarrow U_{0}, \phi(p)=0$ and connected neighbourhood $V_{1} \subset V$ with a change of coordinates $\psi: V_{1} \rightarrow V_{0}, \psi(f(p))=0$, such that

$$
\psi \circ f \circ \phi^{-1}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) .
$$

Here U_{0} and V_{0} can be assumed to be connected open neighbourhoods of the origin in \mathbb{R}^{m} and \mathbb{R}^{n} respectively.
Proof. Since $\operatorname{Df}(p)$ has rank k, there exists a $k \times k$ minor with nonzero determinant. By reodering the coordinates, we may assume that it is the upper left minor, $\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ for $i, j=1, \ldots, k$. After translation we may assume that $p=0$, and $f(0)=0$. Let $(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{m-k},(v, w) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$ be the coordinates. If we write $f(x, y)=(Q(x, y), R(x, y))$ for some smooth maps $Q: U \rightarrow \mathbb{R}^{k}$, $R: U \rightarrow \mathbb{R}^{n-k}$, then $\left(\frac{\partial Q_{i}}{\partial x_{j}}\right)_{1 \leq i, j \leq k}$ is nonsingular at the origin. Define $\phi(x, y)=(Q(x, y), y)$. Then

$$
D \phi(0)=\left(\begin{array}{cc}
\frac{\partial Q_{i}}{\partial x_{j}}(0) & \frac{\partial Q_{i}}{\partial y_{j}}(0) \\
0 & I_{m-k}
\end{array}\right)
$$

is nonsingular. By the Inverse Function theorem there are connected neighbourhoods U_{1} and U_{0} of the origin in \mathbb{R}^{m} such that $\phi: U_{1} \rightarrow U_{0}$ is a diffeomorphism. Writing the inverse map $\phi^{-1}(x, y)=(A(x, y), B(x, y)), A: U_{0} \rightarrow \mathbb{R}^{k}, B: U_{0} \rightarrow \mathbb{R}^{m-k}$, we have

$$
(x, y)=\phi(A(x, y), B(x, y))=(Q(A(x, y), B(x, y)), B(x, y)) .
$$

It follows that $B(x, y)=y$, and so $\phi^{-1}(x, y)=(A(x, y), y), Q(A(x, y), y)=x$, and therefore,

$$
f \circ \phi^{-1}(x, y)=(x, \tilde{R}(x, y)), \quad \tilde{R}(x, y)=R(A(x, y), y) .
$$

The Jacobian matrix of this map at an arbitrary point $(x, y) \in U_{0}$ is

$$
D\left(f \circ \phi^{-1}\right)(x, y)=\left(\begin{array}{cc}
I_{k} & 0 \\
\frac{\partial \tilde{R}_{i}}{\partial x_{j}} & \frac{\partial \tilde{R}_{i}}{\partial y_{j}}
\end{array}\right) .
$$

Since composing with a diffeomorphism does not change the rank of a map, this matrix has rank equal to k everywhere on U_{0}. Since the first k columns are obviously independent, the rank can be k only if the partial derivatives $\frac{\partial \tilde{R}_{i}}{\partial y_{j}}$ vanish identically on U_{0}, which implies that \tilde{R} is independent of variables y. Thus, setting $S(x)=\tilde{R}(x, 0)$, we have

$$
\begin{equation*}
f \circ \phi^{-1}(x, y)=(x, S(x)) . \tag{6}
\end{equation*}
$$

Let $V_{1}=\left\{(v, w) \in V:(v, 0) \in U_{0}\right\}$, which is a neighbourhood of the origin. The map $\psi(v, w)=$ $(v, w-S(v))$ is a diffeomorphism from V_{1} onto its image, which can be seen by observing that $\psi^{-1}(s, t)=(s, t+S(s))$. It follows from (6) that

$$
\psi \circ f \circ \phi^{-1}(x, y)=\psi(x, S(x))=(x, S(x)-S(x))=(x, 0) .
$$

For a domain $\Omega \subset \mathbb{R}^{n}$, a smooth map $f: \Omega \rightarrow \mathbb{R}^{m}$ is called an immersion if $D f(x)$ is injective for all $x \in \Omega$ (i.e., $D f(x)$ has a trivial kernel for all x), and a submersion if $D f(x)$ is surjective for all $x \in \Omega$. Clearly $n \leq m$ is a necessary condition for f to be an immersion, while $n \geq m$ is required for a submersion. These are important examples of maps of constant rank. The Rank theorem is a powerful tool for the study of such maps. For example, let us show that if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is an injective map of constant rank, then it is an immersion. Indeed, if f is not an immersion, then the rank k of f is less than m. By the Rank theorem in a neighbourhood of any point there is a local change of coordinates such that f becomes

$$
f\left(x_{1}, \ldots x_{k}, x_{k+1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

It follows that $f(0, \ldots, 0, \varepsilon)=f(0)$ for ε small, which contradicts injectivity of f.
Another useful consequence of the Inverse Function theorem is the following theorem which gives conditions under which a level set of a smooth map is locally the graph of a smooth function.
Theorem 2.6 (Implicit Function Theorem). Let $U \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ be an open set, and let $(x, y)=$ $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ denote the standard coordinates on U. Suppose $\Phi: U \rightarrow \mathbb{R}^{k}$ is a smooth map, $(a, b) \in U$, and $c=\Phi(a, b)$. If the $k \times k$ matrix

$$
\left(\frac{\partial \Phi^{i}}{\partial y^{j}}(a, b)\right)
$$

is nonsingular, then there exist neighbourhoods $V_{0} \subset \mathbb{R}^{n}$ of a and $W_{0} \subset \mathbb{R}^{k}$ of b, and a smooth map $f: V_{0} \rightarrow W_{0}$ such that $\Phi^{-1}(c) \cap V_{0} \times W_{0}$ is the graph of f, i.e., $\Phi(x, y)=c$ for $(x, y) \in V_{0} \times W_{0}$ if and only if $y=f(x)$.

Proof. Consider the map $\Psi: U \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}$ defined by $\Psi(x, y)=(x, \Phi(x, y))$. Its differential at (a, b) is

$$
D \Psi(a, b)=\left(\begin{array}{cc}
I_{n} & 0 \\
\frac{\partial \Phi_{i}}{\partial x_{j}}(a, b) & \frac{\partial \Phi_{i}}{\partial y_{j}}(a, b)
\end{array}\right),
$$

which is nonsingular by hypothesis. Thus by the Inverse Function theorem there exist connected open neighbourhoods U_{0} of (a, b) and Y_{0} of (a, c) such that $\Psi: U_{0} \rightarrow Y_{0}$ is a diffeomorphism. Shrinking U_{0} and Y_{0} if necessary, we may assume that $U_{0}=V \times W$ is a product neighbourhood. The inverse map has the form (why?)

$$
\Psi^{-1}(x, y)=(x, B(x, y))
$$

for some smooth map $B: Y_{0} \rightarrow W$. Let $V_{0}=\left\{x \in V:(x, c) \in Y_{0}\right\}$ and $W_{0}=W$, and define $f: V_{0} \rightarrow W_{0}$ by $f(x)=B(x, c)$. Comparing y components in the relation $(x, c)=\Psi \circ \Psi^{-1}(x, c)$ yields

$$
c=\Phi(x, B(x, c))=\Phi(x, f(x)),
$$

whenever $x \in V_{0}$ so the graph of f is contained in $\Phi^{-1}(c)$. Conversely suppose $(x, y) \in V_{0} \times W_{0}$ and $\Phi(x, y)=c$. Then $\Psi(x, y)=(x, \Phi(x, y))=(x, c)$, so

$$
(x, y)=\Psi^{-1}(x, c)=(x, B(x, c))=(x, f(x)),
$$

which implies that $y=f(x)$.

